

Radiation Effects on ZRAMs

E. X. Zhang¹, F. E. Mamouni¹, D. M. Fleetwood¹, R. D. Schrimpf¹, M. E. Alles,¹ W. Xiong², and Sorin Cristoloveanu³

> ¹Vanderbilt University, Nashville, TN 37235 ²Texas Instruments, Inc., Dallas, TX 75808 ³IMEP, Grenoble, France

Outline

➢Introduction

Experimental Details

- Test Conditions
- Mechanism
- Irradiation Conditions
- Results and Discussion
 - Program windows for FinFETs with different fin widths
 - Total dose radiation effects
- ≻Conclusion

Introduction

What is a ZRAM?

-- Zero capacitor DRAM, a real 1T DRAM cell

Traditional DRAM cell

1T-DRAM cell, Z-RAM cell

Why use ZRAM?

-- Scalability, high performance, low power, low cost.....

How to characterize **ZRAM**?

-- Gate Induced Floating Body Effect

M. Bawedin, S. Cristoloveanu a, D. Flandre, Solid-State Electronics 51 (2007) p.1252

2009 MURI Annual Review

I.

ZRAM cell Programming and Readout

2009 MURI Annual Review

June 11th, 2009

2009 MURI Annual Review

Devices and Irradiations

Characterization of ZRAM:

Device: n- and p-FinFETs with different fin widths, 58 nm fin height and 2 nm gate oxide (SiO_2)

ZRAM Test: I_D vs. V_G under different back-gate bias; I_D/I_S current vs. time under V_G/V_{BG} and V_D pulse

Irradiation Test Conditions:

ON-state: $V_G = 0.5 \text{ V}$, $V_D = V_S = \text{Vsub} = 0 \text{ V}$ (NMOS); OFF-state: $V_G = V_S = V_{sub} = 0 \text{ V}$, $V_D = -0.5 \text{ V}$ (PMOS); Total dose: 0 ~ 500 k with 10-keV X-rays

June 11th, 2009

Results & Discussions

June 11th, 2009

2009 MURI Annual Review

Transient effect on ZRAM cell/pMOS

Transient effect on ZRAM cell/nMOS

Т

Fin width dependence of ΔI_D

Т

Fin width dependence of retention time

Retention time is defined as the time it takes to lose 50% of the charge.

Retention time increases with fin width.

ZRAM/pMOS has a longer retention time than nMOS with same fin width for these devices and programming conditions.

Fin width dependence of the coupling effect between front-gate & back-gate

First look: Radiation effects on nMOS ZRAMs

Current increase with TID is due to back gate leakage

ZRAM retention disappears with large back gate leakage

2009 MURI Annual Review

First look: Radiation effects on pMOS ZRAMs

- ZRAM retention decreases with increasing TID for these irradiation and programming/readout conditions
- Loss of retention probably due to BG V_{th} shifts in the BOX. If so, may require adjustment to BG pulse voltage in radiation environment.

Conclusions

• ZRAM retention increases with fin width due to increased gate-induced floating body effects.

- For these devices and programming conditions, memory retention is superior for pMOS than nMOS.
 - Stored electrons in body more stable than holes.
 - Results may vary for other technologies.
- ZRAM retention may be quite sensitive to total-dose irradiation (at least for high doses).
 - Characterization of other kinds of devices is planned.

T.

June 11th, 2009

2009 MURI Annual Review