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Outline

• SEU rate prediction

–The general Monte Carlo method

–RPP method

–Collected charge methods

• Criteria for using a Monte Carlo approach

• Status of the CREME96 Revision

• Conclusion
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Detailed physical simulation

http://www.icknowledge.com/
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Croc image:  http://crocodilian.com/crocfaq/ 

Algorithms 
Do it once; do it right. Leverage supercomputer scaling.
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A simulated radiation event
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• MRED: A Monte Carlo engine 
to determine a probability 
distribution by repetitive 
sampling.

• Monte Carlo: Appropriate 
when analytical computations 
are impractical.

• Example: “The probability 
density for an isotropic, 
mono-energetic flux of ions 
with atomic number z and 
energy E0 to deposit energy E 
in a specific volume?”

Monte Carlo simulation

http://ecx.images-amazon.com/images/I/411nB42M-7L._AA260_.jpg
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SEE rate: What MRED computes

 

R(t) = dE d
n̂ ê<0All Ez

dA ê dt
t

(z,E, ê, x,t ) Pe(z,E, ê, x,t ;t)

The world

Probability of an effect

 
(z,E, ê, x,t )

Effect rate
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The common simplifying assumptions

R(t) = dE d
n̂ ê<0All Ez

dA ê dt
t

(z,E, ê, x,t ) Pe(z,E, ê, x,t ;t)

R = dE (z,E) d
n̂ ê<0All Ez

dA ê Pe(z,E, ê, x)

 

Pe(z,E, ê, x,t ;t) lim
0
Pe(z,E, ê, x) (t (t ))The event and effect 

are instantaneous…

 
(z,E, ê, x,t) (z,E, ê, x)The flux is time 

independent…

 
(z,E, ê, x) (z,E)The flux is isotropic 

and homogeneous…
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The event occurs if and only if the deposited energy exceeds 
a critical threshold…

RPP model assumptions

 
Pe(z,E, ê, x) pd (z,E, ê, x,Ed ) Pe(Ed )dEd

 
pd (z,E, ê, x,Ed ) = (Ed h(ê, x)S(z,E))

Pe(Ed ) = H (Ed Ec )

R = dE (z,E) d
n̂ ê<0All Ez

dA ê Pe(z,E, ê, x)

The world is a rectangular parallelepiped…

The event probability is completely determined by the energy 
deposited in the world…

Deposited energy is completely determined by LET, which is 
constant…

= Unit step function
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The chord-length distribution emerges

 

R(Ec ) = A dE (z,E) d
Ec

S(z,E )

1

A
d

n̂(x ) ê<0

dA ê ( h(ê, x))
z

=
Ed

S(z,E)

pc (l)
H (l)H (lmax l)

A
d

n̂(x ) ê<0

dA ê (l h(ê, x))

Pc (l) pc (x)dx
l

P
c
(l) for a 10 10 1 m RPP

Differential path 
length distribution

Integral path 
length distribution

R(Ec ) = A dE (z,E)Pc (
Ec

S(z,E)
)

z

The RPP Rate
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The LET distribution emerges

f (s) = f (s)H (smax s) dE (z,E) s S(z,E)( )( )
z

=
(z,Ei )

dS(z,E)
dE E=Ei

iz

s = S(z,Ei )

R(Ec ) = A ds dE (z,E) s S(z,E)( )( )
z

Pc Ec /s( )

Dirac delta

Differential:

Integral:

R(Ec ) = A ds
Ec lmax

smax
f (s)Pc

Ec

s

s 

E
2
 E

1
 

F(s) f (s )ds
s

= f (s )ds
s

smax
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The RPP model for rate prediction

• Upset follows deposition of critical 
charge Qc or equivalent energy, Ec.

• Deposition of Q > Qc depends on 
projectile LET and chord-length 
distribution

• Rate depends on LET distribution 
in the space environment

• Factors entering into the model
– Target (RPP) size
– LET distribution
– RPP s path length distribution
– Critical charge for upset

• The upset rate, R:

A = Surface area

lmax = Longest chord

Ec = Energy equivalent of Qc

smin = Ec /lmax= Minimum LET for upset

smax = Maximum environmental LET

F(s) = Integral LET distribution

pc (x) = Differential path length distribution

R(Ec ) = AEc F(s)pl (Ec/s)
ds

s2

smax

smin
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Effect criterion: Collected charge

pQ (z,E, ê, x,Q) = dE1 dE2 ... dEn (Q kiEi
i=1

n

) pd1(z,E, ê, x,E1)pd2 (z,E, ê, x,E2 )...pdn (z,E, ê, x,En )

 
Pe(z,E, ê, x) dQ pQ (z,E, ê, x,Q)Pe(Q)

Multiple Sensitive Volumes

SV1=90%
SV2=13%

SV3=4%

Collector
Base

Emitter

R = dE (z,E) d
n̂ ê<0All Ez

dA ê Pe(z,E, ê, x)

Effect probability is determined 
by collected charge…

Probability to collect charge Q

Dirac delta

Probability for an effect, e.g.: Pe(Q) H (Q Qc )

How to evaluate this? MRED!
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SPICE in the loop – What it really does.

 

pQ (z,E, ê, x,Q) = dE1 dE2… dEn (Q kiEi
i=1

n

) pd1(z,E, ê, x,E1)pd2 (z,E, ê, x,E2 )…pdn (z,E, ê, x,En )

Recall the single-transistor probability to collect charge Q:

R = dE (z,E) d
n̂ ê<0All Ez

dA ê Pe(z,E, ê, x)

Pe(z,E, ê, x) dQ1 dQ2… dQn pQ1(z,E, ê, x,Q1)pQ2(z,E, ê, x,Q1)…pQn(z,E, ê, x,Q1) Pe(Q1,Q2 ,… ,Qn )

SPICE
If the effect involves several transistors and a joint probability…

This is the time-independent case…

NMOSNMOS PMOS
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Summary of the approximation hierarchy

RPP MC: One SV

MC: Nested SVs MC: SVs +SPICE MC: SVs +TCAD

RPP

IRPP

Cross-
Section 
Data
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Indicators for Monte Carlo analysis

• Known technology or system application characteristics:
– Basic assumptions of the RPP or IRPP model are known to be 

inappropriate to the technology under investigation.
– Upsets are known to require near simultaneous, multiple-transistor, 

multiple-node perturbations.

• Experimental observations: 
– Unexpected upsets are observed in what is assumed to be a 

hardened technology.
–  Different ions with the same LET produce upset cross-sections that 

differ statistically.
– Cross sections for multiple ions cannot be correlated with a single 

sensitive volume.
–  strong azimuthal angle dependence (rotation around the die surface 

normal) is observed with heavy ions.
– Strong angular dependence is evident in test data using protons. 
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CREME-MC - Status

User-Specified 

Back-End-of-Line1 

Sensitive 

Volume 
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Conclusion

Thank you!


