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Outline 

 Describe the process of using Monte-Carlo Radiative Energy 
Deposition (MRED) tools to determine single event upset 
(SEU) rates and mechanisms. 
  Simulation flow 
  Calorimetry 
  Spice Interface 
  Calibration 
  Analyses 
  Conclusions 

 Example component – Master-Slave latch 
  Dual Interlocked Cell (DICE) design; 90nm process 
  No static single-node SEU mechanisms 
  Cannot use rectangular parallelpiped (RPP) model 
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MRED Simulation Flow 
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 Simplified flow of a particle event in the space environment 
  Particle: Random selection from spectrum (Z,E) 
  Direction: Random plane and position 
  Transport: Move particle through CAD object, track energy 

deposition 
  If transistors are hit, send to HSPICE 
  Record SEU/no SEU, perform logging, repeat 



Transport, Calorimetry, Event Selection 

  Track energy deposition in complex solid models using physics 
models from Geant4, collaborators, and those internally 
developed. 

 Correlate energetic events in regions/sensitive volumes (SV) of 
the device – Required for simulating multiple-node mechanisms. 

 Select only those events that deposit energy in the SV for spice 
simulation. 
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Spice Interface 

 After an event, each transistor’s Qcoll is converted to a 
double exponential current pulse and directed to the 
appropriate node. 
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Spice Interface: Qcoll to Node Current 

 Sensitive Volume 
parameters define 
relationship between 
deposited energy and 
collected charge, Qcoll. 

 “Small” Qcoll (~ < 15 fC) 
  Use fixed time 

constants and vary 
peak current, Im 

 “Large” Qcoll (~ > 15 fC): 
  Saturate Im and vary 

hold time and decay 
time. 

  Integral of I(t) == Qcoll 
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Spice Timing and Flow, Dynamic 

 MRED queues a set of events for SPICE evaluation – 
determines if SEU occurs (not from Qcrit) 
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Model Calibration 

 Current approach is iterative 
  Simulate and compare to experimental data, adjust 

parameters and re-simulate as required. 
 Guidelines 

  Physical structures bound depth and lateral dimensions 
•  Isolation (STI), n/p-well depth, etc. 
•  Layout and process information, including TCAD radiation 

simulations establish foundation for ‘first-pass’ at sensitive 
volume parameterization. 

•  Refine sensitive volume parameters to produce best agreement 
possible between simulation and experiment 

 Post-simulation analyses used to verify that SEU 
mechanisms are physically justifiable. 

 Charge sharing and coincident node SEU mechanisms are 
challenging to model (as in the DICE latch). 
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Example Calibration 

  Initial results (qualitative) provide user with good sense of 
SEU mechanisms. 

 Refinement of SV parameters improves quantitative 
agreement. 
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Determining SEU Rate 

 The calibrated model serves as the basis for SEU rate 
predictions. Only change the ‘gun’ parameters and post-
processing routines. 

 User must select an environment 
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 Simulator output can be as 
simple as a single line, the 
SEU rate. 

 2x106 events per CPU 
 200 CPUs per batched 

simulation 
 2000 CPU-hrs total 
 Adams 90% ~1.5x10-8 /bit-day 

 Frequency dependent 



Detailed Analyses: Directional Sensitivity 

 Most SEU in the environment occur at very specific angles 
 Points to specific mechanisms – Two-node process 
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MRED Visualization 
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 OpenDX interface to MRED provides powerful 
visualization capabilities 

 Layout to schematic to SEU rate – identify sensitive areas 



Quantify and Correlate Design to SEU Rate 
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Analysis: Frequency Dependence 
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  Investigate SEU 
properties as a function 
of frequency 

 What is the right way to 
predict the SEU rate? 

 Are our measurements 
sufficient? 

 At certain beam 
angles, cross-sections 
are insensitive to 
frequency. 

 Weibull fits to normally 
incident data only may 
under-predict on-orbit 
rate. 



Analysis: Frequency Dependence 
 CREME96 @ normal incidence under-predict rate for all 

frequencies 
 Static cross section establishes baseline SEU rate 
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Conclusions 

 MRED: 
  Provides a means for determining the SEU rate of circuit 

hardened devices. 
  Identifies sensitive node combinations and their relative 

probability, in units of cross-section or rate in a given 
environment. 

  Suitable when multiple node SEU mechanisms cannot be fit to 
the RPP model 

  Frequency analyses indicate one cannot determine the correct 
SEU rate without first quantifying the cross-sections that 
determine the quasi-static SEU rate. 

   While circuit-hardened technologies represent an improvement 
over their non-hardened counterparts, they do not provide 
complete SEU immunity and require extensive testing to properly 
determine their on-orbit single event upset error rates. 
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