

Single Event Upset Rate Prediction Methods for Circuit-level Hardened Devices

Kevin Warren¹
Robert Reed^{1,2}, Andrew Sternberg¹, Robert Weller^{1,2}, Lloyd Massengill^{1,2}, Ron Schrimpf^{1,2}, Mark Baze³

¹The Institute for Space and Defense Electronics, Vanderbilt University ²Vanderbilt University Electrical and Computer Engineering Department ³Boeing SSED

Special thanks to DTRA and Ken LaBel of GSFC/NASA (NEPP)

Outline

- → Describe the process of using Monte-Carlo Radiative Energy Deposition (MRED) tools to determine single event upset (SEU) rates and mechanisms.
 - Simulation flow
 - Calorimetry
 - Spice Interface
 - Calibration
 - Analyses
 - Conclusions
- ★ Example component Master-Slave latch
 - Dual Interlocked Cell (DICE) design; 90nm process
 - No static single-node SEU mechanisms
 - Cannot use rectangular parallelpiped (RPP) model

MRED Simulation Flow

- → Simplified flow of a particle event in the space environment
 - Particle: Random selection from spectrum (Z,E)
 - Direction: Random plane and position
 - Transport: Move particle through CAD object, track energy deposition
 - If transistors are hit, send to HSPICE
 - Record SEU/no SEU, perform logging, repeat

Transport, Calorimetry, Event Selection

- → Track energy deposition in complex solid models using physics models from Geant4, collaborators, and those internally developed.
- ◆ Correlate energetic events in regions/<u>sensitive volumes (SV)</u> of the device – Required for simulating multiple-node mechanisms.

→ Select only those events that deposit energy in the SV for spice

Spice Interface

→ After an event, each transistor's Q_{coll} is converted to a double exponential current pulse and directed to the appropriate node.

N.

Spice Interface: Q_{coll} to Node Current

- → Sensitive Volume parameters define relationship between deposited energy and collected charge, Q_{coll}.
- → "Small" Q_{coll} (~ < 15 fC)</p>
 - Use fixed time constants and vary peak current, I_m
- + "Large" Q_{coll} (~ > 15 fC):
 - Saturate I_m and vary hold time and decay time.
- → Integral of I(t) == Q_{coll}

Spice Timing and Flow, Dynamic

→ MRED queues a set of events for SPICE evaluation – determines if SEU occurs (not from Q_{crit})

Model Calibration

- → Current approach is iterative
 - Simulate and compare to experimental data, adjust parameters and re-simulate as required.
- Guidelines
 - Physical structures bound depth and lateral dimensions
 - Isolation (STI), n/p-well depth, etc.
 - Layout and process information, including TCAD radiation simulations establish foundation for 'first-pass' at sensitive volume parameterization.
 - Refine sensitive volume parameters to produce best agreement possible between simulation and experiment
- Post-simulation analyses used to verify that SEU mechanisms are physically justifiable.
- Charge sharing and coincident node SEU mechanisms are challenging to model (as in the DICE latch).

Example Calibration

→ Initial results (qualitative) provide user with good sense of SEU mechanisms.

→ Refinement of SV parameters improves quantitative

agreement.

Determining SEU Rate

- → The calibrated model serves as the basis for SEU rate predictions. Only change the 'gun' parameters and postprocessing routines.
- User must select an environment

- Simulator output can be as simple as a single line, the SEU rate.
- → 2x10⁶ events per CPU
- 200 CPUs per batched simulation
- 2000 CPU-hrs total
- → Adams 90% ~1.5x10⁻⁸ /bit-day
 - Frequency dependent

Detailed Analyses: Directional Sensitivity

- → Most SEU in the environment occur at very specific angles
- → Points to specific mechanisms Two-node process

MRED Visualization

- → OpenDX interface to MRED provides powerful visualization capabilities
- → Layout to schematic to SEU rate identify sensitive areas

Quantify and Correlate Design to SEU Rate

Analysis: Frequency Dependence

- → Investigate SEU properties as a function of frequency
- → What is the right way to predict the SEU rate?
- → Are our measurements sufficient?
 → At certain beam angles, cross-sections are insensitive to frequency frequency.
- → Weibull fits to normally incident data only may under-predict on-orbit rate.

SEU Cross-section as a function of LET and frequency

Analysis: Frequency Dependence

- CREME96 @ normal incidence under-predict rate for all frequencies
- → Static cross section establishes baseline SEU rate

Conclusions

→ MRED:

- Provides a means for determining the SEU rate of circuit hardened devices.
- Identifies sensitive node combinations and their relative probability, in units of cross-section or rate in a given environment.
- Suitable when multiple node SEU mechanisms cannot be fit to the RPP model
- ★ Frequency analyses indicate one cannot determine the correct SEU rate without first quantifying the cross-sections that determine the quasi-static SEU rate.
- → While circuit-hardened technologies represent an improvement over their non-hardened counterparts, they do not provide complete SEU immunity and require extensive testing to properly determine their on-orbit single event upset error rates.