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Motivation

• Single event upset test data does not always conform to the 
standard rectangular parallelepiped model (CREME96)
• Secondary particle generation from high energy heavy ions.
• Single particle-multiple node effects.

• MRED provides an alternative solution to CREME96 for performing 
error rate predictions
• Includes nuclear physics and tracks secondary particles.
• TCAD interface for solid model creation, materials specification, and 

event capture.
• Allows for the tracking of charge generation in multiple sensitive 

regions.
• Flexible interface for real-time spice analysis of circuit response.

• MRED has been used for heavy ion error rate predictions in
• Hardened SRAM
• DICE latches
• DICE Flip Flops
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One of the original applications of MRED was 
understanding the SEU response of a 0.25 μm 
hardened SRAM.
Identified nuclear reactions as a contributor to the 
measured SEU cross section curve.
Inclusion of nuclear reactions was vital to 
determining the proper in-flight SER.

K.M. Warren, et al., “The Contribution of Nuclear Reactions to Heavy Ion Single Event Upset 
Cross-section Measurements in a High-density SEU Hardened SRAM,” IEEE Trans. Nuc. Sci.
Vol 52, Dec. 2005 pp 2125 – 2131.
R.A. Reed, et al., “Implications of Nuclear Reactions for Single Event Effects Test Methods and 
Analysis”, IEEE Trans. Nuc. Sci., Vol 53, Dec 2006. Pp 3356-3362.
D.R. Ball, et al., “Simulating Nuclear Events in a TCAD Model of a High-Density SEU Hardened 
SRAM Technology,” IEEE Trans. Nuc. Sci., Vol 53, Aug 2006. Pp 1794-1798.
C.L. Howe, et al., “Role of heavy-ion nuclear reactions in determining on-orbit single event 
error rates,” IEEE Trans. Nuc. Sci., Vol 52, Dec 2005, pp 2182-2188.
R.A. Reed, et al., “Impact of Ion Energy and Species on Single Event Effects Analysis,” IEEE 
Trans. Nuc. Sci., in print.

Nuclear Reactions and SEU Response
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Nuclear Reactions

• Nuclear reactions between high 
energy ions and high Z 
materials used in 
semiconductor manufacturing 
produce secondary particles

• May produce high-mass 
fragments

• Fragments can have higher 
LET than primary.

• Probability of a nuclear reaction 
is small, but can still dominate 
error rate for hardened 
technologies.

Active
Silicon

This event deposits significantly 
more energy than that by a single 

primary ion.

Primary
Ion

Trajectory
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Nuclear Reactions

Quantitatively, what is 
the effect of high Z 
materials?
The addition of 
tungsten pushes peak 
charge deposition 
over 30x primary LET

Passivation
Insulator (SiO2)
Interconnect (Al,W)

Silicon Silicon Silicon

Silicon

Stack A Stack B Stack C

Sensitive
Volume

Sensitive 
Volume

Sensitive 
Volume

Passivation
Insulator (SiO2)
Interconnect (Al,W)

Silicon Silicon Silicon

Silicon

Stack A Stack B Stack C

Sensitive
Volume

Sensitive 
Volume

Sensitive 
Volume

1.E-17
1.E-16
1.E-15
1.E-14
1.E-13
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07

0.0 0.5 1.0 1.5
Deposited Charge (pC)

In
te

gr
al

 C
ro

ss
 S

ec
tio

n 
(c

m
2 ) Stack A - SV on surface

Stack B - SV Buried in Silicon
Stack C - Interconnect

Tungsten layer 
exacerbates effect

523 MeV Neon



NASA Review 15 November 2007 6

Vanderbilt ISDE

Nuclear Reactions
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• Calorimetry on the sensitive volume (left figure) indicates 
two relevant regions
• Direct Ionization – the generated charge is from 

ionization by the primary particle 
• Indirect Ionization – the generated charge is from the 

secondary product(s) of a nuclear reaction
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Nuclear Reactions

• Conclusion: High Z materials in BEOL processing, such as tungsten, 
can increase the on-orbit SER

The red squares are the event 
rates when a thin tungsten layer 
is placed near the sensitive 
volume.  

Si

Si Si or W
Layer
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Nuclear Reactions – on orbit SER

• Modeling nuclear reactions 
can be vital to predicting the 
correct on-orbit error rate.

• Flight data on a hardened 4 
Mbit SRAM support 
hypothesis.

• Direct ionization and IRPP 
method under-predict in 
flight SER by over 3 orders of 
magnitude.

• The inclusion of nuclear 
reactions and BEOL 
materials in the MRED model 
dramatically improves the 
fidelity of the rate prediction.

• Test and analysis must be 
performed to correctly 
identify when the higher 
fidelity models are needed.

MRED MRED 

On-orbit flight data
4Mbit SRAM (BAE)
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SEU Rate Prediction – 90 nm DICE Latch

Multiple node charge collection and/or charge 
generation processes dominate the SEU response of 
single node hardened circuitry
Difficult or impossible to accurately model using RPP 
methods.
Demonstrate the use of MRED for developing a SEU 
response model suitable for in-flight SEU rate 
predictions.
K.M. Warren, et al., “Monte-Carlo Based On-Orbit Single Event Upset 
Rate Prediction in a Radiation Hardened by Design Latch,” IEEE Trans. 
Nuc. Sci., in print. 
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DICE Latch – Multi-node processes (90nm)

• In hardened circuits, heavy ion SEU test data may not fit the traditional RPP 
model used in CREME96 calculations.

• When two regions must be struck simultaneously, the the probability of an 
upset becomes one of coincidence between two regions.

• Identified by a cross section curve that is not well behaved in terms of 
effective cross section versus effective LET.

• The data above show an azimuthally dependent cross section and the 
cosine law is not applicable

P0 P1 P3P2

1 0 1 0

N0 N1 N3N2

N4 N5 N7N6
CK

D
D

P0 P1 P3P2

1 0 1 0

N0 N1 N3N2

N4 N5 N7N6
CK

D
DD

0 40 80 120 160 200 240

10-13

10-12

10-11

10-10

10-9

10-8

Ef
fe

ct
iv

e 
C

ro
ss

 S
ec

tio
n 

(c
m

2 /b
it)

Effective LET (MeVcm2/mg)

 10 MeV/u Ar (LETo=9.7)
 10 MeV/u Kr (LETo=31.3)
 10 MeV/u Xe (LETo=58.7)
 Weibull Fit 

       (LETo=12,W=100,S=1.5,σsat=2.75μm2)

Heavy ion data and 
circuit for a 90nm 

DICE latch



NASA Review 15 November 2007 11

Vanderbilt ISDE

DICE Latch (90nm) – MRED Implementation

• This latch had 10 combinations of two-node 
events that would lead to an SEU.

• Calibrated volume sizes and placements based 
on test data, TCAD results, and engineering 
judgment.
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Dice Latch (90nm) - Results

• Using multiple volumes and 
coincidence testing with 
calibration resulted in a model 
that captured the SEU cross 
section as a function of LET, 
azimuth (roll), and tilt. 

• Space environment fed into 
calibrated model for SEU rate 
calculation.
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Dice Latch (65nm)

A similar rate prediction was performed for the 
same DICE latch circuit in 65 nm. 
In this case, MRED was used to evaluate 
possible re-design ideas to improve SEU 
performance.
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Sensitive Pairs - Circuit in data high q=1

The current sensitive node pairs 
dominate the cross sections
• Shallow tilt angles
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• Steep tilt angles
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Sensitive Pairs - Circuit in data low q=0

MNM2/MPM0, MNM2, MNM0 
pairs are main error 
contributors. 
Much smaller experimental 
cross section for q=0.
Note that there is not a 
sensitive N-P combination 
on the left side of the layout. 
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Re-design Idea!

It appears that in q=0, there are no adjacent sensitive pairs – every 
sensitive node pair is well separated. This does not appear to be true 
in q=1. How can we use this?
We know that it is possible that MPM3/MNM1 and MPM1/MNMQBPD 
coupling can upset the circuit (not sure how much at this point)
Switching the location of MPM3 and MPM1 might solve the problem!
This would not require a change in silicon, only a change in 
interconnect (theoretically)
In this condition, no previously identified sensitive node 
combinations would exist together on either side of the layout.
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All 1’s, Xenon over tilt

Moving sensitive pairs produces a reduction in SEU 
cross section.

Simulation
Red = Redesign
Green = Original Design
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Xenon over tilt 

Note that the all 1s and all 0s cases are now very similar. 
Fortunately, the prediction is that both 1s and 0s will have a low 
cross section.

Red = Redesign simulation all 0s
Green = Original design data all 1s
Blue = Original design data all 0s
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Copper over tilt

Red = Redesign simulation all 0s
Green = Original design data all 1s
Blue = Original design data all 0s
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All 1’s and all 0’s data are now similar and have smaller 
cross sections.
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Hardened Master Slave Flip Flop

A rate prediction was performed for a master slave flip 
flop (90nm)
Significant developments in MRED include the 
inclusion of Spice in the loop
Avoid hand identification of sensitive nodes and 
sensitive node pairs
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Hardened Master Slave Flip Flop

• Spice and MRED have been coupled during run-time to evaluate 
valid SEU conditions on an event by event basis.

• Very useful for large circuits such as the 60+ transistor DICE 
master-slave flip flop shown below.

• Avoids manually identifying sensitive node combinations and 
critical charges.
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times for the final simulation set.times for the final simulation set.
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SPICE Timing and Flow
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This process was repeated over 100,000 times for the final simulThis process was repeated over 100,000 times for the final simulation set.ation set.
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Hardened Master Slave Flip Flop

• The modeled SEU response is completely self contained.
• The model must still be calibrated to heavy ion data –

sensitive volume dimensions and placement.
• The results can be used to directly identify weakness in 

the layout.
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Hardened Master Slave Flip Flop
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• All information related to 
each SEU event can be 
recorded.

• Identify sensitive regions in 
the layout.

• Perform qualitative 
assessment of new layouts 
(non-calibrated).

8 Distinct Clusters
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Conclusions

• MRED provide a unique solution to determining on-orbit SER
• Nuclear reaction physics – high critical charge circuits, process 

dependence on SEU response.
• Multi-node mechanisms – unique ability to place and track energy 

deposition in multiple sensitive volumes.
• Exploring hardening solutions.
• Spice coupling – provides a more automated means for identifying 

sensitive nodes and relating SEU response to layout.
• Current MRED development focus with respect to error rate 

prediction 
• Guidelines for sensitive volume parameters as a function of 

process/technology.
• Methodologies for generating current pulses from sensitive volume 

charge generation in MRED-Spice simulations.
• Interfacing MRED to higher level simulators (e.g. VHDL, SEU Tool). 
• Developing guidelines for heavy ion testing for the purpose of 

identifying when nuclear reactions are important in rate predictions.


