

Single Event Upset Error Rate Predictions using MRED

Kevin Warren

Motivation

- Single event upset test data does not always conform to the standard rectangular parallelepiped model (CREME96)
 - Secondary particle generation from high energy heavy ions.
 - Single particle-multiple node effects.
- MRED provides an alternative solution to CREME96 for performing error rate predictions
 - Includes nuclear physics and tracks secondary particles.
 - TCAD interface for solid model creation, materials specification, and event capture.
 - Allows for the tracking of charge generation in multiple sensitive regions.
 - Flexible interface for real-time spice analysis of circuit response.
- MRED has been used for heavy ion error rate predictions in
 - Hardened SRAM
 - DICE latches
 - DICE Flip Flops

Nuclear Reactions and SEU Response

- One of the original applications of MRED was understanding the SEU response of a 0.25 μm hardened SRAM.
- Identified nuclear reactions as a contributor to the measured SEU cross section curve.
- Inclusion of nuclear reactions was vital to determining the proper in-flight SER.
- K.M. Warren, et al., "The Contribution of Nuclear Reactions to Heavy Ion Single Event Upset Cross-section Measurements in a High-density SEU Hardened SRAM," IEEE Trans. Nuc. Sci. Vol 52, Dec. 2005 pp 2125 – 2131.
- R.A. Reed, et al., "Implications of Nuclear Reactions for Single Event Effects Test Methods and Analysis", IEEE Trans. Nuc. Sci., Vol 53, Dec 2006. Pp 3356-3362.
- D.R. Ball, et al., "Simulating Nuclear Events in a TCAD Model of a High-Density SEU Hardened SRAM Technology," IEEE Trans. Nuc. Sci., Vol 53, Aug 2006. Pp 1794-1798.
- C.L. Howe, et al., "Role of heavy-ion nuclear reactions in determining on-orbit single event error rates," IEEE Trans. Nuc. Sci., Vol 52, Dec 2005, pp 2182-2188.
- R.A. Reed, et al., "Impact of Ion Energy and Species on Single Event Effects Analysis," IEEE Trans. Nuc. Sci., in print.

Nuclear Reactions

Vanderbilt ISDE

- Nuclear reactions between high energy ions and high Z materials used in semiconductor manufacturing produce secondary particles
- May produce high-mass fragments
- Fragments can have higher LET than primary.
- Probability of a nuclear reaction is small, but can still dominate error rate for hardened technologies.

This event deposits significantly more energy than that by a single primary ion.

Active

Silicon

Nuclear Reactions

Vanderbilt ISDE

- Quantitatively, what is the effect of high Z materials?
- The addition of tungsten pushes peak charge deposition over 30x primary LET

Integral Cross Section (cm²)

- Calorimetry on the sensitive volume (left figure) indicates two relevant regions
 - Direct Ionization the generated charge is from ionization by the primary particle
 - Indirect Ionization the generated charge is from the secondary product(s) of a nuclear reaction

Nuclear Reactions

Vanderbilt ISDE

 Conclusion: High Z materials in BEOL processing, such as tungsten, can increase the on-orbit SER

Nuclear Reactions – on orbit SER

- Modeling nuclear reactions can be vital to predicting the correct on-orbit error rate.
- Flight data on a hardened 4 Mbit SRAM support hypothesis.
- Direct ionization and IRPP method under-predict in flight SER by over 3 orders of magnitude.
- The inclusion of nuclear reactions and BEOL materials in the MRED model dramatically improves the fidelity of the rate prediction.
- Test and analysis must be performed to correctly identify when the higher fidelity models are needed.

SEU Rate Prediction – 90 nm DICE Latch

- Multiple node charge collection and/or charge generation processes dominate the SEU response of single node hardened circuitry
- Difficult or impossible to accurately model using RPP methods.
- Demonstrate the use of MRED for developing a SEU response model suitable for in-flight SEU rate predictions.
- K.M. Warren, et al., "Monte-Carlo Based On-Orbit Single Event Upset Rate Prediction in a Radiation Hardened by Design Latch," IEEE Trans. Nuc. Sci., in print.

- In hardened circuits, heavy ion SEU test data may not fit the traditional RPP model used in CREME96 calculations.
- When two regions must be struck simultaneously, the the probability of an upset becomes one of coincidence between two regions.
- Identified by a cross section curve that is not well behaved in terms of effective cross section versus effective LET.
- The data above show an azimuthally dependent cross section and the cosine law is not applicable

DICE Latch (90nm) – MRED Implementation

judgment.

Dice Latch (90nm) - Results

Vanderbilt ISDE

Z species (from CREME spectrum)

•

٠

- A similar rate prediction was performed for the same DICE latch circuit in 65 nm.
- In this case, MRED was used to evaluate possible re-design ideas to improve SEU performance.

Sensitive Pairs - Circuit in data high q=1

- The current sensitive node pairs dominate the cross sections
 - Shallow tilt angles
 - ♦ MNM1-MPM3
 - ♦ MNQBPD-MPM1
 - Steep tilt angles
 - ♦ MNM1-MNQBPD

Sensitive Pairs - Circuit in data low q=0

- MNM2/MPM0, MNM2, MNM0 pairs are main error contributors.
- <u>Much</u> smaller experimental cross section for q=0.
- Note that there is <u>not</u> a sensitive N-P combination on the left side of the layout.

Re-design Idea!

- It appears that in q=0, there are no adjacent sensitive pairs every sensitive node pair is well separated. This does not appear to be true in q=1. How can we use this?
- We know that it is possible that MPM3/MNM1 and MPM1/MNMQBPD coupling can upset the circuit (not sure how much at this point)
- Switching the location of MPM3 and MPM1 might solve the problem! This would not require a change in silicon, only a change in interconnect (theoretically)
- In this condition, no previously identified sensitive node combinations would exist together on either side of the layout.

All 1's, Xenon over tilt

Vanderbilt ISDE

Moving sensitive pairs produces a reduction in SEU cross section.

Xenon over tilt

Vanderbilt ISDE

Note that the all 1s and all 0s cases are now very similar.
Fortunately, the prediction is that both 1s and 0s will have a low cross section.

Copper over tilt

Vanderbilt ISDE

 All 1's and all 0's data are now similar and have smaller cross sections.

- A rate prediction was performed for a master slave flip flop (90nm)
- Significant developments in MRED include the inclusion of Spice in the loop
- Avoid hand identification of sensitive nodes and sensitive node pairs

Hardened Master Slave Flip Flop

- Spice and MRED have been coupled during run-time to evaluate valid SEU conditions on an event by event basis.
- Very useful for large circuits such as the 60+ transistor DICE master-slave flip flop shown below.
- Avoids manually identifying sensitive node combinations and critical charges.

SPICE Timing and Flow

Vanderbilt ISDE

Irradiate FF1 at a random time and watch for an upset clocked out of FF2. This process was repeated over 100,000 times for the final simulation set.

Hardened Master Slave Flip Flop

Vanderbilt ISDE 10^{-1} 10 \diamond 10^{-8} ଚ୍ଚ 10^{-8} Cross Section (cm²/bit) Cross Section (cm²/bit) 10^{-9} 10^{-9} 10^{-10} 10^{-10} Simulation 60° Tilt, 0° Roll Experiment 60° Tilt. 0° Roll 10⁻¹¹ 10⁻¹¹ Simulation 60° Tilt, 90° Roll $-\circ$ - Simulation 0° Tilt, 0° Roll Experiment 60° Tilt, 90° Roll -Experiment 0° Tilt, 0° Roll Tilt 10^{-12} 10^{-1} 20 30 10 40 50 60 70 0 30 0 10 20 40 50 60 70 LET (MeVcm²/mg) LET ($MeVcm^2/mg$) Roll

- The modeled SEU response is completely self contained.
- The model must still be calibrated to heavy ion data sensitive volume dimensions and placement.
- The results can be used to directly identify weakness in the layout.

Vanderbilt ISDE

24

All information related to • each SEU event can be recorded.

Hardened Master Slave Flip Flop

- Identify sensitive regions in ulletthe layout.
- **Perform qualitative** ۲ assessment of new layouts (non-calibrated).

8 Distinct Clusters

7%

Conclusions

- MRED provide a unique solution to determining on-orbit SER
 - Nuclear reaction physics high critical charge circuits, process dependence on SEU response.
 - Multi-node mechanisms unique ability to place and track energy deposition in multiple sensitive volumes.
 - Exploring hardening solutions.
 - Spice coupling provides a more automated means for identifying sensitive nodes and relating SEU response to layout.
- Current MRED development focus with respect to error rate prediction
 - Guidelines for sensitive volume parameters as a function of process/technology.
 - Methodologies for generating current pulses from sensitive volume charge generation in MRED-Spice simulations.
 - Interfacing MRED to higher level simulators (e.g. VHDL, SEU Tool).
 - Developing guidelines for heavy ion testing for the purpose of identifying when nuclear reactions are important in rate predictions.