

Total Ionizing Dose and Single Event Effects in Strained Si Technologies

<u>Hyunwoo Park¹</u>, Daniel J. Cummings¹, Rajan Arora³, Jonathan A. Pellish⁴, Robert A. Reed², Ronald D. Schrimpf², Dale McMorrow⁵, Sarah Armstrong Nation², Daniel M. Fleetwood^{2,7}, Toshikazu Nishida¹, Mark E. Law¹ and Scott E. Thompson¹

¹ Electrical and Computer Engineering, University of Florida
 ²Department of Electrical Engineering & Computer Science, Vanderbilt Unversity
 ³School of Electrical & Computer Engineering, Georgia Institute of Technology
 ⁴NASA Goddard Space Flight Center, Code 561.4
 ⁵Naval Research Laboratory
 ⁶Department of Material Science and Engineering, University of Florida
 ⁷Department of Physics & Astronomy, Vanderbilt University

Outline

- Introduction
- Project Focus
 - 1. Total Ionizing Dose (TID) Effects on Strained HfO₂-based nMOSFETs
 - 2. Laser-Induced Current Transients in Strained-Si Diodes
 - 3. Laser-Induced Current Transients in Strained-Si MOSFETs
- Summary
- Publication

Uniaxial Stress in Si MOSFETs

90 nm (2003)

- Uniaxial strained Si technology is successfully implemented beyond 90 nm logic device.

- It is widely used in commercial electronics market.

Mechanical Stress Alters Mobility Significantly

In modern devices, the strained-Si technology is implemented to boost transistor performance.
 Mechanical stress enhances electron and hole mobility significantly (Performance Booster).

How about Radiation Environment?

David R. Myers, 2002

Reliability question for Strained Si

Thompson, 2004

- Researchers are interested in reducing the cost of chips using commercial technology.

- It is very important to understand reliability of strained Si under radiation.

Main Contributions

- The first systematic study about the effect of uniaxial-strained silicon technology under radiation.
 - Total Ionizing Dose (TID) Effects on Strained HfO₂-based nMOSFETs
 =>Uniaxial stress lower hole trap energy level in HfO₂ and SiOx
 =>Uniaxial stress decrease radiation-induced threshold voltage shift
 =>Mobility enhancement under uniaxial stress is not lost after irradiation
 - 2. Laser-Induced Current Transients in Strained-Si Diodes
 - => Uniaxial stress alters electron mobility along <001> direction
 - => Uniaxial stress changes shape of single event transients in large N+/P diodes
 - 3. Laser-Induced Current Transients in Strained-Si MOSFETs
 => Impact of uniaxial stress on single event transients in submicron MOSFETs

External Mechanical Stress

A four point bending jig is used to apply mechanical stress to devices.

$$\sigma = \frac{Eyt}{2a\left(\frac{L}{2} - \frac{2a}{3}\right)}$$

Outline

- Introduction
- Project Focus
 - 1. Total Ionizing Dose (TID) Effects on Strained HfO₂-based nMOSFETs
 - 2. Laser-Induced Current Transients in Strained-Si Diodes
 - 3. Laser-Induced Current Transients in Strained-Si MOSFETs
- Summary
- Publication

TID Experiment on Strained MOSFET

TID Experiment Matrix

Mechanical Stress Radiation Dose	Compressive 200MPa	0MPa	Tensile 100MPa	Tensile 200MPa
Pre-rad (0 Mrad)	\checkmark	\checkmark	\checkmark	\checkmark
0.5 Mrad	\checkmark	\checkmark	\checkmark	\checkmark
1 Mrad	\checkmark	\checkmark	\checkmark	\checkmark
5 Mrad	\checkmark	\checkmark	\checkmark	\checkmark

I_D-V_{GS} under Tensile (200 MPa)

- Positive charge trapping in HfO₂/SiO_x dielectrics is dominant.

V_t Shift vs. Mechanical Stress

- Both stress reduce threshold voltage shifts.

Uniaxial Stress on Hole Trap Energy Level

Y.S. Choi and **H.Park** et al. JAP 2009

- Both stresses lower hole trap activation level in dielectrics.

Stress and Radiation on Electron Mobility

- Benefit of Strained Si is not lost after a total dose of 5 Mrad (SiO₂)

Outline

Introduction

Project Focus

- 1. Total Ionizing Dose (TID) Effects on Strained HfO₂-based nMOSFETs
- 2. Laser-Induced Current Transients in Strained-Si Diodes
- 3. Laser-Induced Current Transients in Strained-Si MOSFETs
- Summary
- Publication

Current Transients under Uniaxial Stress

Laser-Induced Current Transients Measurement

-We can observe changes of current transient pulses under mechanical stresses

Laser-Induced Current Transients

- Tensile (Compressive) stress decrease (increase) peak current and collected charges.

Stress Dependence of Current

- $N_{1p}(\sigma)$ is related to bandgap narrowing under mechanical stress. - Mechanical stress alters electron mobility along <001> direction.

Strain Effect on E-H Pair Generation

The number of generated e-h pairs **Absorption coefficient** $\frac{\Delta \alpha}{\alpha} = \frac{\Delta E_g(\sigma)}{h\nu - E_g} <<1, \quad h\nu > E_g$ $N_{1p}(z) = \frac{\alpha}{\hbar \omega} \exp(-\alpha z) \int_{-\infty}^{\infty} I_0(z,t) dt$ $V_{\rm T}$ shift due to $\Delta E_{\rm c}, \Delta E_{\rm g}$ 0.08 change in # of e-h pairs $| \Delta I_{max}(240 \text{ MPa})/I_{max}(0) | \sim 0.065$ (m-1)∆E_a Uniaxial -20 0.06 V_T shift / (meV) -40 (m-1)∆E_a Biaxial -60 0.04 -80 ΔE_{c} Biaxial Increasing depth (z) 0.02 500nn -100 E₄= 1.13, E₄= 9.16, a= 2.46, b= -2.35, m=1.3 $z=1 \mu m$ -120 0.005 0.01 0.015 0.00 0 0.02 250 500 750 1000 1250 1GPa Strain & Stress (MPa) [Ref. Lim, 2004]

 $\Delta E_g \approx 30 \, meV$ at 1 GPa of uniaxial tensile stress

- Change in N_{1p} is less than 3% for 1 GPa of uniaxial tensile stress

Strain Effect on Electron Mobility

Under Tensile Stress :

For 1 GPa of uniaxial tensile stress,

- electron mobility changes ~53% and number of e-h pairs < 3%
- → Electron mobility change dominates current transient change under stress

Experiment vs. 2-D Simulation results

Experiment

2-D FLOODS Simulation

* FLOODS : Florida Object Oriented Device Simulator

-2D simulation results have good agreement with experimental ones.

I_{max} under Uniaxial Stress

- ~ 23% reduction of peak current under 1GPa of uniaxial tensile stress

Charge Collection until 10 ns

- ~ 21% reduction of collected charges under 1GPa of uniaxial tensile stress

Outline

Introduction

Project Focus

- 1. Total Ionizing Dose (TID) Effects on Strained HfO₂-based nMOSFETs
- 2. Laser-Induced Current Transients in Strained-Si Diodes
- 3. Laser-Induced Current Transients in Strained-Si MOSFETs
- Summary
- Publication

Motivation

Laser-induced Current Transient in Strained Si MOSFETs

Goal :

- Investigate impact of uniaxial stress on laserinduced current transients in MOSFETs experimentally and theoretically.
- Suggest how to mitigate single event effects in highly-scaled MOSFETs using uniaxial stress.

Laser-induced Current Transients Set up for "Large" diodes

- Current transients in diodes are measured using high-speed probe station.

- A four point bending jig and high speed probes will be modified.

Diodes vs. Transistors

< Diodes >

< Transistors >

One RF(GSG) probe is used!

How can we solve this ?

New Mechanical Jig and Probes

-The trend of peak current and collected charge under MOSFET will be compared with that of diodes case (Fall 2010 and Spring 2011). - It is also compared with FLOODS simulation .

Summary

- Uniaxial mechanical stresses reduces charge trapping in HfO₂-based nMOSFET due to lowering hole trap energy level in HfO₂/SiO_x dielectrics.
- Electron mobility enhancement remains under mechanical stress after irradiation.
- Uniaxial stress alter current transients due to vertical electron mobility change in large N+/P diodes.
- 2D simulation can predict current transient under high (~1GPa) uniaxial stress.
- The first experimental study of stress effects on current transients in MOSFETs is proposed.

Publication

- <u>H. Park</u>, S. K. Dixit, C. Youn Sung, R. D. Schrimpf, D. M. Fleetwood, T. Nishida, and S. E. Thompson, "Total Ionizing Dose Effects on Strained HfO2-Based nMOSFETs,", *IEEE Transactions on Nuclear Science*, vol. 55, pp. 2981-2985, 2008.
- Y. S. Choi, <u>H. Park</u>, T. Nishida, and S. E. Thompson, "Reliability of HfSiON gate dielectric silicon MOS devices under [110] mechanical stress: Time dependent dielectric breakdown," *Journal of Applied Physics*, vol. 105, p. 044503, Feb 15 2009.
- S. Y. Son, Y. S. Choi, P. Kumar, <u>H. Park</u>, T. Nishida, R. K. Singh, and S. E. Thompson, "Strain induced changes in gate leakage current and dielectric constant of nitrided Hf-silicate metal oxide semiconductor capacitors," *Applied Physics Letters*, vol. 93, p. 153505, Oct 13 2008.
- H. Park, D. J. Cummings, R. Arora, J. A. Pellish, R. A. Reed, R. D. Schrimpf, D. McMorrow, S. E. Armstrong, U. Roh, T. Nishida, M. E. Law, and S. E. Thompson, "Laser-Induced Current Transients in Strained-Si Diodes,", *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3203-3209, 2009.
- D. J. Cummings, <u>H. Park</u>, S. E. Thompson, and M.E. Law, "An Adaptive Grid Scheme for Single-Event Effects Simulations", accepted to *Nuclear and Space Radiation Effect conference*, July, 2010
- D. J. Cummings, A. F. Witulski, <u>H. Park</u>, R. D. Schrimpf, and S. E. Thompson, "Mobility Modeling Considerations for Radiation Effects Simulations in Silicon," *under review of IEEE Transaction on Nuclear Science.*