

Total Dose and Single Event Effects in Strained Si Technologies

<u>Scott E. Thompson¹</u>, Mark Law¹, Hyunwoo Park¹, Rajan Arora², Jonathan A. Pellish², Robert A. Reed², Andrew Sternberg², Ronald D. Schrimpf², Aditya Kalavagunta², and Alan Tipton² Sriram K Dixit^{2,3}, Daniel M Fleetwood^{4,5}

¹ Electrical and Computer Engineering, University of Florida

²Interdisciplinary Program in Materials Science, Vanderbilt University

³Vanderbilt Institute of Nanoscale Science & Engineering, Vanderbilt University

⁴Department of Electrical Engineering & Computer Science, Vanderbilt Unversity

⁵Department of Physics & Astronomy, Vanderbilt University

Strained Si Hole Mobility Higher than Ge

- Single Event Transient in Strained Si Diode
- Total Ionizing Dose Effects on Strained HfO₂based nMOSFETs
- Future Planes

1GPa Stress Video: Flexure Jig

TY OF FLORIDA

Single Event Transient in Strained Si Diode

- Total Ionizing Dose Effects on Strained HfO₂based nMOSFETs
- Future Planes

Single Event Transient (SET) Measurement Set Up

SET setup / Robert A. Reed²

UNIVERSITY OF FLOBIDA

Single Event Transient (SET) Measurement System

UNIVERSITY OF FLORIDA

Electron Single Event Transient Pulse

Total Charge Collection in Diode

Single Event Transient on pn Diode Pulsed Laser (Single Photon Absorption)

Enginêennê

Single Event Transient due to Time Domain

Strain Alters Mobility / Charge Collection

Electron mobility (μ)

Complete Set of Piezoresistance Coefficients¹³

Measurement includes:

- ✓ In-plane longitudinal pi-coefficient
- ✓ In-plane transverse pi-coefficient
- ✓ In-plane biaxial pi-coefficient
- ✓ Out-of-plane uniaxial pi-coefficient (using biaxial setup)

schematic for applying biaxial stress

schematic for applying uniaxial stress

n-MOSFET Piezoresistance Coefficients

14

			$\pi_{_{l}}$	$\pi_{_t}$	$\pi_{\scriptscriptstyle B}$
(001) wafer	<100> channel	n-MOSFET	-47 (7.7)	-22 (4)	-50 (2.3)
		Smith bulk Si	-102	53	-49
	<110> channel	n-MOSFET	-32 (7.4)	-15 (6.4)	-47 (3.2)
		Smith bulk Si	-31	-18	-49
(110) wafer	<100> channel	n-MOSFET	-24 (1)	25 (1)	10 (2.4)
		Smith bulk Si	-102	53	-49
	<110> channel	n-MOSFET	-17 (1.8)	11 (2.4)	-7 (3.9)
		Smith bulk Si	-31	53	-49

Strain Effect on Electron Mobility

Extract Piezoresistance Coefficient (Simple RC delay Circuit Model)

Compare with other Piezoresistance Coefficients

UNIVERSITY OF FLORIDA

Extracted piezoresistance coefficient (bulk)

$$\frac{\Delta \rho_d}{\rho_d} = \pi_d \sigma = 0.13$$

$$\pi_d = 50 \times 10^{-5} / MPa$$

$$\pi_{12}(=\pi_t) \text{ coefficient} \text{ From < 100 > channel}$$

$$\pi_{10}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ coefficient} \text{ from < 100 > channel}$$

$$\pi_{110}(=\pi_t) \text{ from < 100 > channel}$$

Note: Tensile stress is taken to be positive stress and compression stress is taken to be negative stress. This vaule is compared with nMOSFET's transverse π_t (= π_{12}) coefficient and Smith's bulk π_{12} coefficient.

UF Group, JAP, in press June 2008

Total Charge Collection in Diode

Qualitative Model: Less Charge Collection

Uniaxial Tensile Stressed Silicon

Strain Alters Bandgap: e, h Generation

UF Group , EDL, 2004

Simulation of SET on Si Diode in Floods/DESIS

- Single Event Transient in Strained Si Diode
- Total Ionizing Dose Effects on Strained HfO₂based nMOSFETs
- Future Planes

Stress Alters Trap Energy Level

Stress Alters Trap Energy Level E_{c,ox} Trap Energy Level **Changes with** $\Phi_T(\sigma)$ **Stress** $= E_{C,OX} - E_{TRAP}(\sigma)$ EF ETRAP Ec Substrate Injection (b) Ev 6 ∆J₆(ס)(J₆(0) (%) 5 P-Si TaN SiO₂ 4 Gate Injection 3 (V_G<0) 2 Gate Injectio -150 -100 -50 50 100 150 0 Tension Compression UF Group, APL 2008

Uniaxial Mechanical Stress (MPa)

Set up in Aracor Machine

Sample

HfO₂ based nMOSFET

Note: 65nm technology in Sematech

Id_Vgs (Tensile 200MPa)

Threshold voltage is decreased by increasing radiation dose.

This trend is seen in other stress cases such as compressive -, No-, and Tensile-St

Threshold Voltage: Tensile Stress

Threshold Shift: Compressive Stress

Conclusions / 2008 Plans

- Significantly less electron charge collection in tensile strained (~50% less charge collected at ~1GPa stress)
- Strain also alters trap energy level in gate insulator
- Future work
 - NRL June, 2008 trip planned
 - Higher stress range
 - Hole P+ / n-well collections
 - Close SET modeling / experimental data gap
 - Develop model for trap energy change with strain

