ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA

OVERVIEW OF THE LAST FIVE YEARS

AND NEW RESULTS

Sokrates T. Pantelides

Department of Physics and Astronomy, Vanderbilt University, Nashville, TN

The theory team:

Leonidas Tsetseris, Matt Beck, Ryan Hatcher, George Chatzisavvas,

Sasha Batyrev, Yevgenyi Puzyrev, Nikolai Sergueev, Blair Tuttle

AFOSR/MURI FINAL REVIEW 2010

THEORY OBJECTIVES

- DISPLACEMENT DAMAGE
 - Defects, charging
 - ➤ electrons
- ALTERNATE DIELECTRICS
 - Interface structure, interface defects, NBTI,...
- CARRIER MOBILITIES
- LEAKAGE CURRENTS

Experimental data, Eisen, 1968

Motion of an ion thru Si<110>

$$n(t) - n(0)$$

Data: Eisen (1968)

Ryan Hatcher

Single-Event Gate Rupture

Leakage-induced rupture

Breakdown results from local heating due to ion-excited carriers...

...AND carriers injected by applied fields

$$\frac{1}{E_{CR}} = \frac{q\mu_1 n(V)}{J_{CR}} + \frac{q\mu_2 n(L)}{J_{CR}}$$

Is it defect mediated?

Sexton, et al., IEEE TNS (1998)

Low-energy recoil dynamics in SiO₂

100 eV Si recoil

Damage in amorphous material: Network defects

Defect states in SiO₂

femtoseconds after recoil

Increasing numbers of defects...

...increasing number of defect states within the bandgap!

Defect states separated by ~2-5 Å! Conducting path!

Defect-mediated leakage

Displacement-damage-induced defect states facilitate field-injected leakage

MULTISCALE TRANSPORT THEORY

Data by Massengill et al. 2001

Si-SON-HfO₂

POST-IRRADIATION SWITCH-BIAS ANNEALING

Vanderbilt team

Van Benthem & Pennycook, ORNL

perfect structure

substitutional Hf: local lattice expansion

Possible new defect complex

PASSIVATED DB (Si-H) ACROSS FROM A SUBOXIDE BOND (Si-Si)

OR Hf-Si BOND

Proton hopping from dangling bond to suboxide bond

Alternative: DB ACROSS FROM Hf-Si BOND

NEW RESULTS

DEFECT DYNAMICS IN SiGe/strained-Si

- FREE HYDROGEN
- PASSIVATION OF DOPANTS BY HYDROGEN
- VACANCIES AND INTERSTITIALS

L. Tsetseris, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, submitted to Appl. Phys. Lett.

Hydrogen in SiGe and strained Si

X _{Ge}	Charge	∆E (eV)	
11.1%	0	0.01	
22.2%	0	0.07	H ⁰ prefers SiGe
33.3%	0	0.05	

Hydrogen-boron complexes in SiGe and s-Si

X _{Ge}	Charge	E _b (eV)	∆E (eV)
11.1%	0	0.61	0.00
22.2%	0	0.63	-0.22
33.3%	0	0.57	-0.54

H prefers to stick to B in s-Si.

Hydrogen-boron complexes in SiGe and s-Si

X _{Ge}	Charge	E _b (eV)	∆E (eV)
11.1%	0	0.61	0.00
22.2%	0	0.63	-0.22
33.3%	0	0.57	-0.54
11.1%	-	0.48	0.00
22.2%	-	0.54	-0.08
33.3%	-	0.44	-0.13

H prefers to stick to B in s-Si.

P-H complexes in SiGe and s-Si

X _{Ge}	Charge	E _b (eV)	∆E (eV)
11.1%	0	0.70	0.00
22.2%	0	0.45	0.18
33.3%	0	0.52	0.42

H prefers to stick to P sites in SiGe.

P-H complexes in SiGe and s-Si

X _{Ge}	Charge	E _b (eV)	∆E (eV)
11.1%	0	0.70	0.00
22.2%	0	0.45	0.18
33.3%	0	0.52	0.42
11.1%	+	0.31	0.00
22.2%	+	0.27	0.01
33.3%	+	0.30	0.01

H prefers to stick to P sites in SiGe.

IMPACT ON DEVICE OPERATION

NBTI, PBTI

INCREASE IN INTERFACE TRAP DENSITY BIAS, MODERATE TEMPERATURES (~150° C)

H prefers to stick to B in s-Si BTI GETS WORSE

H prefers to stick to P sites in SiGe BTI IMPROVEMENT

Vacancies in SiGe/strained Si

Vacancies have lower energy in SiGe

Agglomeration of Ge atoms around vacancies in SiGe

Self-interstitials in SiGe/strained Si

- Si self-interstitial moves from s-Si to SiGe energy gain 0.23 eV for x_{Ge} = 11%
- Si interstitial goes substitutional, creating a Ge interstitial
- Ge atoms agglomerate around Ge self-interstitial (trend weaker than that for vacancies)

IMPACT ON DEVICE OPERATION

PRESENCE OF SiGe SUBSTRATE REDUCES

RADIATION-INDUCED DISPLACEMENT DAMAGE

Ge/high-k systems Ge volatilization products in high-k dielectrics

Annealing of Ge substrates initiates volatilization and desorption of GeO molecules

In Ge-based gate stacks, GeO must out-diffuse through the gate dielectric

Some of the GeO molecules may be trapped in the gate oxides

 Experimental evidence: out-diffusion of Ge-related species causes degradation of the dielectric (e.g. charge trapping, enhanced leakage current)

V. Golias, L. Tsetseris, A. Dimoulas, and S. T. Pantelides, Microelectr. Eng., submitted

GeO impurities in La₂O₃

- Hex-La₂O₃: layered structure with La-rich slices and O atoms in-between.
- Stable configurations of GeO impurities within and inside the layers.
- GeO transfer from La_2O_3 bulk to vacuum: energy gain of 2.7 eV

GeO in La₂O₃: Electronic properties

• Energy levels in the gap cause charge trapping and enhance leakage currents

• Hydrogen binds to GeO impurities, but some levels in the gap remain

GeO impurities in HfO₂

GeO transfer from HfO₂ bulk to vacuum: energy gain of 1.5 eV

GeO in HfO₂: Electronic properties

E (eV)

• Energy levels in the gap cause **charge trapping** and enhance **leakage currents**

• Hydrogen binds to GeO impurities, but some levels in the gap remain

CRACKING OF H₂ IN SiO₂

• Conley and Lenahan (1993):

Experimental evidence in support of H₂ cracking at O vacancies

• Contrary to theoretical results (Edwards and coworkers 1992,1993)

Oxygen Vacancies

H₂ reacting at V

H₂ reacting at V⁺

H₂ does not crack at room temperature at low-energy vacancies!

ALTERNATIVE MECHANISM: SI DANGLING BONDS

Si-H + hole \rightarrow Si- + H⁺

H₂ cracks at a bare dangling bond without an energy barrier