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Low-Energy Proton Upset
Cross Sections

Consistent with evidence of proton direct ionization contributing to single event upsets 
reported for IBM 65 nm SOI process [Rodbell, TNS 2007][Heidel, TNS 2008]

Data collected by Vanderbilt and NASA Goddard on TI 65 nm bulk CMOS process

3-4 orders of magnitude increase in
cross section below 2 MeV

Cross sections consistent with nuclear
Reaction events for Ep > 10 MeV
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Key Contributions

• Creation of an upset model based on first principles 
and calibrated to well-controlled radiation sources to 
predict the low-energy proton response

• Application of the model to predict the response in 
the space environment

• First unified rate prediction of full space environment 
including direct ionization from protons
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Device Under Test

• High density 6-transistor SRAM 
from Texas Instruments 65 nm 
bulk CMOS process

• 4 Megabit
• Chip-on-board
• Operated at 1.2 Volts

• FPGA-based tester and test 
board designed by NASA 
Goddard
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Transported Proton Spectra

• Proton flux that reaches device in 
CREME96 “Worst Day” environment is 
significant even with heavy shielding

• Low-energy protons not eliminated
• Flux not significantly attenuated with 

heavier shielding in “Solar min”

• Bendel models provide relationship 
between kinetic energy and SEU cross 
section driven by nuclear reactions

• Neither adequately model the 
direction ionization mechanism
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Low-Energy Mechanism

• Data obtained at LBNL provide proof that the increase in SEU cross section is a 
real effect

• Same test setup, beamline, and dosimetry
• Increase in cross section > 400X

• Low-energy test has large spread in energy, can be used to determine if the 
device has a proton sensitivity, but difficult to quantify
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Stopping Power Uncertainty

• Low proton energy leads to 
several important topics

• Where’s the Bragg peak?
• Tune the beam or degrade it
• Topside testing (wire-bonded 

DUT) or backside (C4)
• Straggling, which affects both 

range and energy

• Hard to fit an error rate 
prediction model with 
unknowns in incident particles

• Real physics is important and 
not well characterized by dE/dx

• Systematic complication from 
both an experimental and 
simulation perspective

• SRIM cites variation in reported 
stopping power and Bragg peak
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Modeling from Heavy Ion Data

• Assume that single bit cross sections correspond to physical device area
• Low-LET heavy ion cross sections used to define sensitive areas

• Single, well-known stopping power
• Allow nuclear transport codes and calibrated model to predict low energy 

proton response

σ
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Monte Carlo Simulation

• Vanderbilt’s MRED code randomizes 
protons over array of devices

• Captures energy deposition from direct 
ionization, recoils, and nuclear reactions 
and weights to collected charge
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Qcrit Parameter Estimation

• MRED produces SEU cross section as a function of collected charge
• Least-squares fit to heavy ion and high energy proton SEU cross 

sections is used to determine the circuit critical charge (Qcrit)
• Fit estimates a Qcrit of 1.3 fC, Spice simulations estimated 1.4fC

p+ B Ne
Exp σ

2e-10 cm2
1e-9 cm

2

9e-15 cm2

Simulation

Qcrit
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Proton Predictions

• Estimation of critical charge from previous slide yields the SEU 
cross section over all proton energies

• Underprediction in 3 – 10 MeV range possibly due to spread in beam 
energy
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Contribution of Protons to
Error Rate in ISS Orbit

• Applying isotropic space environment (AP8MIN, magquiet, solar min, 
100 mils Al) to sensitive volume model reveals error rate as function 
of species and critical energy
• Direct ionization is becoming the dominant upset mechanism for 

protons
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Contribution of Protons to
Error Rate in GEO (Worst Day)

• Worst Day environment shows large contributions to error rate from 
both protons and alpha particles

• Need to assess impact on reliability
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Contributions of Species to Error 
Rate in GEO (Solar Min)

• Iron dominates rate in the GEO solar min with 100 mils Al shielding 
environment

• Proton flux too low to be an issue
• Low-LET particles will drive the rate as technology scaling continues
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Low Energy Proton Testing 
Implications

• Details regarding materials upstream from the 
sensitive DUT regions are important
• Kapton/aramica windows, degrader foils, air gap, 

substrate or BEOL thickness, PCBs, package lids, etc
• Tune the primary beam energy as much as is feasible 

to achieve lower particle energy
• Don’t forget straggle (range AND energy)

• Nearly unavoidable systematic error in proton energy 
at DUT plane

• Best used to show device sensitivity
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Summary

• < 2 femtoCoulombs of collected charge can induce 
errors in modern circuits

• direct ionization from protons, alpha particles, and low-
LET heavy ions

• The high abundance of these particles makes a detailed 
understanding of the SEU response critical

• Tests with low-energy protons are difficult to interpret
• Use of data can be difficult due to uncertainty and 

variability in dE/dx, limited range of particles, transport 
through back-end-of-line

• High-energy, low-LET ions may be better suited for 
characterization in this regime

• MRED models fit experimental data and can be used with 
higher confidence for predicting SEU rates in arbitrary 
space environments
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