Ion-Induced Leakage Currents II: Quantum Transport

N. Sergueev¹, M.J. Beck¹, Y.S. Puzyrev¹, K. Varga¹, R.D. Schrimpf², D.M. Fleetwood², and S.T. Pantelides^{1,3}

- ¹ Department of Physics and Astronomy, Vanderbilt University
- ² Department of Electrical and Computer Engineering, Vanderbilt University
- ³ Oak Ridge National Laboratory

Nikolai Sergueev

ANDERBIL

Ion Induced Leakage Currents: II. Quantum transport Density Functional Theory + "Source and sink" method **Conventional transport methods:** scattering theory, open infinite system Infinite a-SiO₂ system Our formalism: K. Varga and S.T. Pantelides, PRL 98, 076804 (2007) Finite system Sink Source a-SiO₂ complex potential complex potential

Nikolai Sergueev

MURI Review – June 2009

Solve diagonalization problem:

$$(H+iW)\Psi_i = E_i\Psi_i$$

W=W_{source}+W_{sink}

Compute Green's functions:

$$G_{\nu\mu} = \sum_{k} \frac{c_{\nu k} c_{\mu k}}{E - E_k}$$

Calculate charge density:

$$\rho(\mathbf{r}) = -\frac{1}{\pi} \oint_C \operatorname{Im} \{ G(\mathbf{r}, \mathbf{r}, E) \} dE$$

Compute leakage current:

$$I(V_b) = \int_{-V_b/2}^{+V_b/2} T(E)dE$$

Nikolai Sergueev

Ion Induced Leakage Currents: II. Quantum transport Initial model calculations VANDERBILT

Crystalline SiO2 - computationally fast

Can we compute device related property ?

Ion Induced Leakage Currents: II. Quantum transport Conductance vs thickness of SiO₂

Not defected

structure yet!

1e-05して日本日本の 1e-06 1e-07 1e-081e-09 $1e-10_{4}^{L}$ 10 12 Oxide thickness (A) 16 18 6 8 14 エン ∇ 1e-108 10 6 12 Oxide thickness (A)

Conductance: exponential dependence as expected from tunneling

Nikolai Sergueev

Our formalism allows:

- --- not only to compute current and conductance
- --- but also to analyze the transport mechanism

PDOS – density of states amplitude is projected on the oxide Transmission – spatial and energy degrees of freedom

Nikolai Sergueev

Defect: single oxygen vacancy

Defect: single oxygen vacancy

Nikolai Sergueev

Increasing number of defects ...

Bias voltage (V)

MURI Review – June 2009

We performed first principles quantum mechanical transport calculations and we obtained the following:

conductance vs. oxide thickness dependence is correct

current-voltage dependence qualitatively agrees with experiment

the defects result in the step-like functions of the IV

current increases with number of defects

Going from atomic-scale to mesoscale description ...

parameters

Percolation Model

Ion-Induced Leakage Currents III. Percolation Model

M. J. Beck¹, N. Sergueev¹, <u>Y. S. Puzyrev¹</u>, K. Varga¹, R. D. Schrimpf³, D. M. Fleetwood³, S. T. Pantelides^{1,3,4}

¹Dept. of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235 ³Dept. of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37235 ⁴Oak Ridge National Laboratory, Oak Ridge, TN

2009 MURI Review

VANDERBILT

From QM transport to I-V device characteristics

Ion Induced Leakage Currents: III. Percolation Model Defect-to-defect tunneling

- L =1.4 nm
- Defect energy levels
- Defect atomistic map

time = 78fs 22 defects

Ion Induced Leakage Currents: III. Percolation Model Defect-to-defect tunneling

Ion Induced Leakage Currents: III. Percolation Model Defect-to-defect tunneling

Leakage Current Temperature Dependence

MURI Review – June 2009

Ion Induced Leakage Currents: III. Percolation Model Leakage Current Time Dependence

Ion Induced Leakage Currents: III. Percolation Model Direct comparison with experiment

Massengill, et al., IEEE TNS 48 1904 (2001)

Model results in real-time defect evolution and transient currents

- Displacement damage lead to appreciable current
- Low-resistivity paths through oxide layers
- 3D Mott defect-to-defect calculation of leakage currents

Ion Induced Leakage Currents: III. Percolation Model Conclusion

From QM transport to I-V device characteristics

