

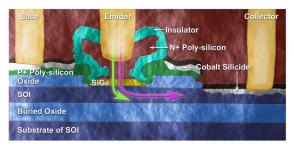
Radiation Effects on Emerging Electronic Materials and Devices

Ron Schrimpf Vanderbilt University

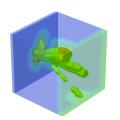
Electrical Engineering & Computer Science Department Institute for Space and Defense Electronics

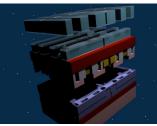
THE STATE UNIVERSITY OF NEW JERSE

The Commons

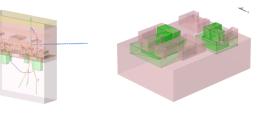


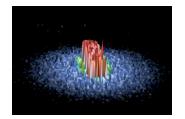
Radiation Effects in Emerging Electronic Materials and Devices

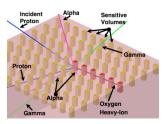

Motivation


 More changes in IC technology and materials in past five years than previous forty years—impact on radiation response is dramatic

Selected Results


- · Development of most accurate rate-prediction tool to date
- · Identification of tungsten as key rad-effects issue
- Fabrication of rad-hard, reliable alternative gate dielectrics
- Demonstration of extremely rad-hard SiGe technology
- First examination of rad effects in strained-Si CMOS


Approach


- Experimental analysis of state-of-the-art technologies through partnerships with semiconductor manufacturers
- Identification of critical mechanisms through firstprinciples modeling
- Implementation and application of a revolutionary multiscale radiation-effects simulation tool to identify key challenges and develop hardening approaches

Impact

- Design tools and methods demonstrated for future radhard technologies
- Greatly improved error-rate analysis tools allow implementation of more reliable space electronics
- First radiation-effects characterization of most advanced technologies (strained Si, HfSiON, etc.)—essential for deployment of state-of-the-art electronics in DoD systems

Team Members

- Vanderbilt University
 - Electrical Engineering: Mike Alles, Dan Fleetwood, Ken Galloway, Marcus Mendenhall, Lloyd Massengill, Robert Reed, Ron Schrimpf, Bob Weller
 - Physics: Len Feldman, Sok Pantelides
- Arizona State University
 - Electrical Engineering: Hugh Barnaby
- University of Florida
 - Electrical and Computer Engineering: Mark Law, Scott Thompson
- Georgia Tech
 - Electrical and Computer Engineering: John Cressler
- North Carolina State University
 - Physics: Gerry Lucovsky
- Rutgers University
 - Chemistry: Eric Garfunkel, Gennadi Bersuker
- Industrial and government collaborators
 - IBM, Intel, Texas Instruments, Freescale, Jazz, National Semiconductor, SRC/Sematech, Sandia, NASA/DTRA, Lockheed-Martin, Oak Ridge National Lab, CFDRC

NC STATE UNIVERSITY

THE STATE UNIVERSITY OF NEW JERSEY

Resource to support national requirements in radiation effects analysis and rad-hard design

Bring academic resources/expertise and real-world engineering to bear on system-driven needs

ISDE provides:

- Government and industry radiation-effects resource
 - Modeling and simulation
 - Design support: rad models, hardening by design
 - Technology support: assessment, characterization
- Flexible staffing driven by project needs
 - 10 Faculty
 - 25 Graduate students
 - 14 Staff and Research Engineers

Schedule—May13 AM

8:40	MURI Overview
	Ron Schrimpf, Vanderbilt University
9:00	Overview: Atomic-Scale Theory of Radiation-Induced Phenomena
	Sokrates Pantelides, Vanderbilt University
9:20	Displacement Damage Effects in Single-Event Gate Rupture
	Matt Beck, Vanderbilt University
9:40	Role of Hydrogen in Aging of Electronics
	David Hughart and Sasha Batyrev, Vanderbilt University
10:00	Break
10:20	Effects of Aging and Moisture on 1/f Noise in MOS Devices
	Xing Zhou, Vanderbilt University
10:40	Defects in Non-Crystalline and Nano-Crystalline Alternative Transition Metal Dielectrics
	Gerry Lucovsky, North Carolina State University
11:00	Total Dose Response of Ge-substrate MOS Capacitors
	Rajan Arora, Vanderbilt University
11:20	Total Dose Effects on Ge pMOSFETs with High-k Gate Stacks: On–Off Current Ratio
	Shrinivasrao Kulkarni, Vanderbilt University

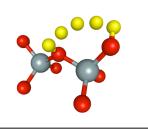
11:40 Lunch

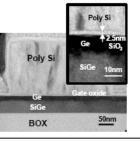
Schedule—May13 PM

- 12:40 Overview: Radiation Effects in Emerging Materials Len Feldman, Vanderbilt University
- 1:00 Interface Structure and Charge Trapping in HfO₂-based MOSFETs Sriram Dixit, Vanderbilt University
- 1:20 Radiation Effects in Advanced Gate Stacks Eric Garfunkel, Rutgers University; Gennadi Bersuker, Sematech
- 2:00 Break
- 2:20 Total Dose and Single Event Effects in Strained Si Technologies Scott Thompson, University of Florida
- 2:40 Single-Event Transients in Strained-Si Devices Mark Law, University of Florida
- 3:00 Single-Event Transient Pulse-Width Measurements in Advanced Technologies Balaji Narasimham, Vanderbilt University
- 3:20 Assessing Alpha Particle-Induced Single Event Transient Vulnerability Matt Gadlage, Vanderbilt University
- 3:40 Analysis of Single-Event Latchup Cross-Section in 65 nm SRAMs John Hutson, Vanderbilt University
- 4:00 Overview: Monte Carlo Radiative Energy Deposition (MRED) Code Bob Weller, Vanderbilt University

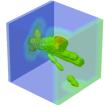
Schedule—May14

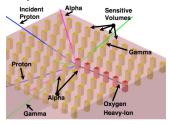
- 8:00 Registration and Continental Breakfast
- 8:30 Radiation Effects in SiGe Devices John Cressler, Georgia Tech
- 9:10 Radiation-Induced Current Transients in SiGe HBTs Jonathan Pellish, Vanderbilt University
- 9:30 Modeling Total Ionizing Dose Effects in Deep Submicron Bulk CMOS Technologies Hugh Barnaby, Arizona State University
- 9:50 Mechanisms of Enhanced Radiation-Induced Degradation due to Excess Molecular Hydrogen Jie Chen, Arizona State University
- 10:10 Break
- 10:30 Radiation Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices Farah El-Mamouni, Vanderbilt University
- 10:50 Single-Event Rate Prediction for Advanced Technologies Kevin Warren and Robert Reed, Vanderbilt University
- 11:10 Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina Howe, Vanderbilt University
- 11:30 Device-Orientation Effects on Single Event Upsets in 65-nm SRAMs Alan Tipton, Vanderbilt University
- 11:50 Meeting Ends



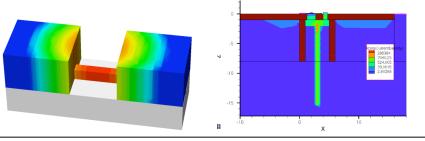

Radiation Effects in Emerging Electronic Materials and Devices: Results

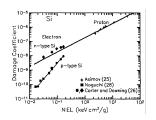
Radiation Response of New Materials

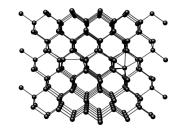

- Incorporation of new materials *dramatically* impacts radiation response
- HfO₂-based dielectrics and emerging high-k materials tested; HfSiON is very promising
- Substrate engineering (strained Si, Si orientations, Si/SiGe, SOI, Ge substrates)



Single Events in New Technologies

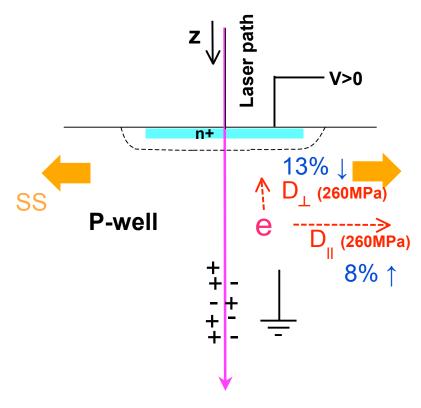

- RADSAFE—Most advanced Monte Carlo single-event/rateprediction tool
- Passivation/metallization found to *dominate* SEE response in some hardened technologies
- Excellent agreement with on-orbit data; conventional rateprediction methods underestimate rate by orders of magnitude

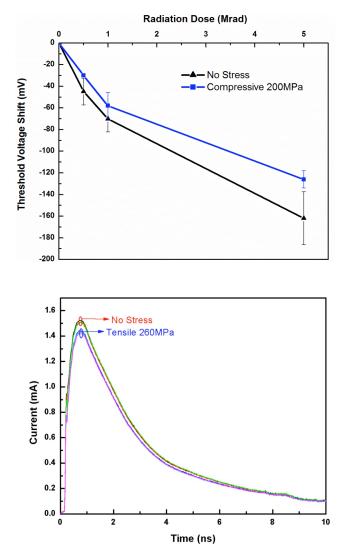

Impact of New Device Structures


- New device technologies strongly impact single-event response and TID leakage current
- SiGe HBTs, strained Si CMOS, ultra-small bulk CMOS exhibit complicated charge collection mechanisms
- Floating-body SOI found to exhibit high radiation-induced off-state leakage due to tunneling

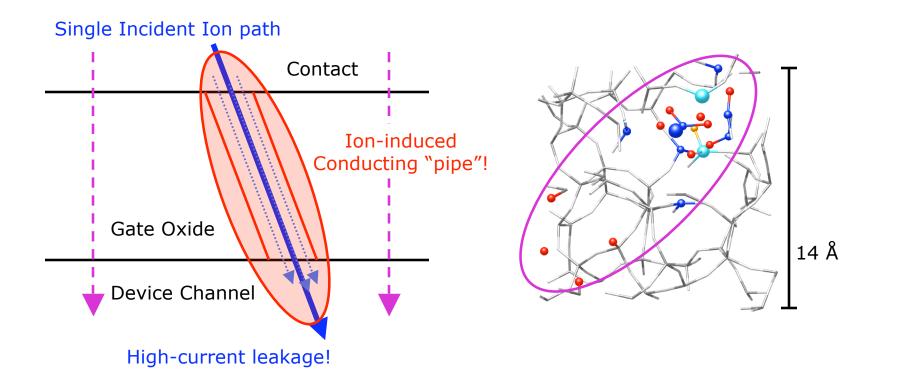
Localized Radiation Damage

- First-principles evidence of micro-melting in small devices
- Displaced atoms affect single-event dielectric rupture
- Monte-Carlo simulation tool for non-ionizing energy loss developed

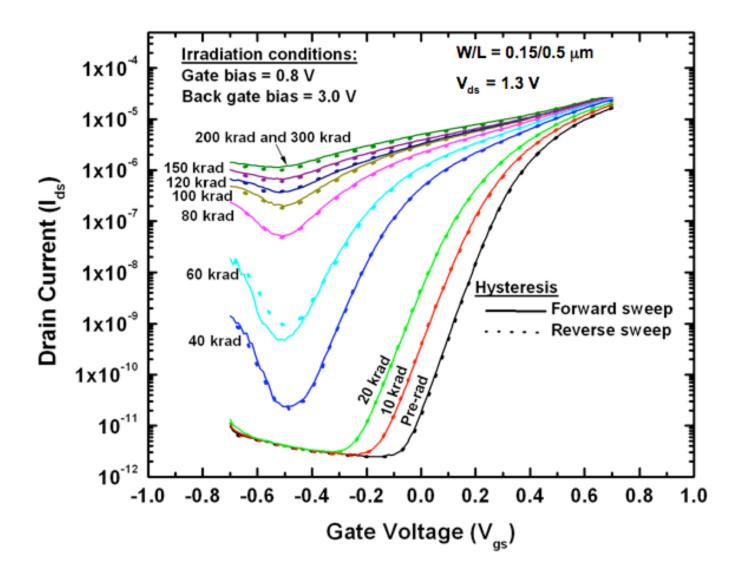




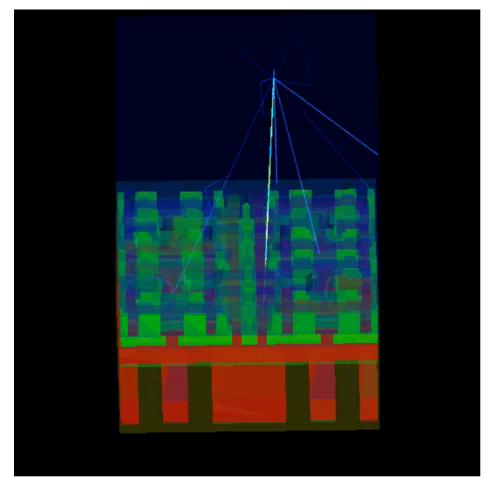
Stress Effects on Radiation Response


< 260 MPa Tensile Stress>

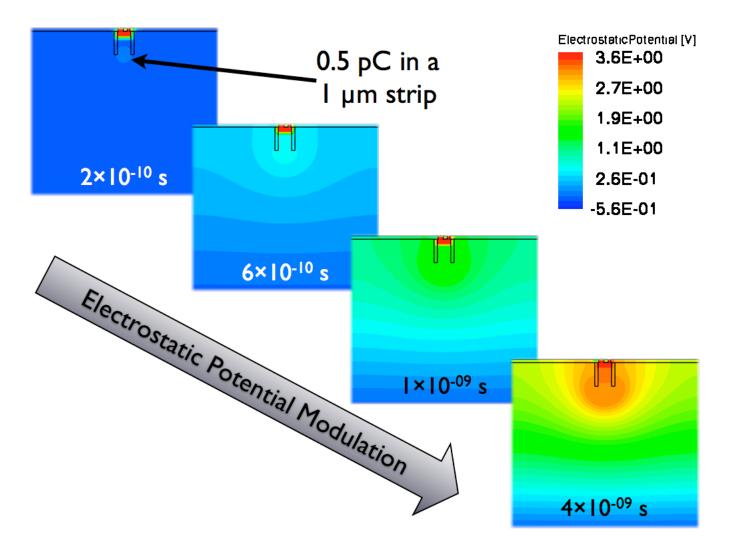
Single-Event Dielectric Rupture



SOI Device Modeling

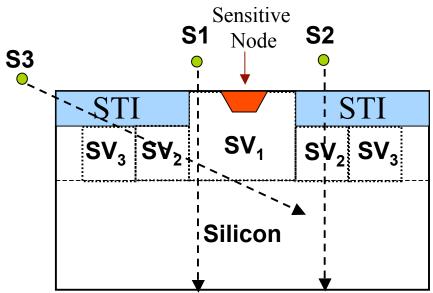


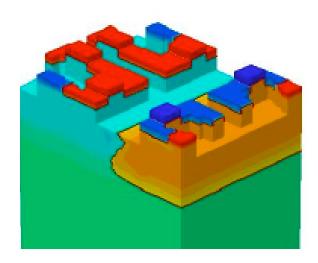
Energy Deposition Processes

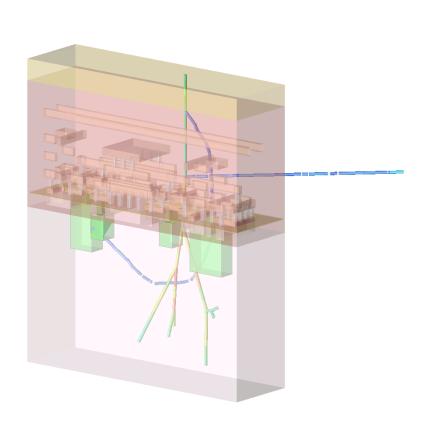


from Marcus Mendenhall

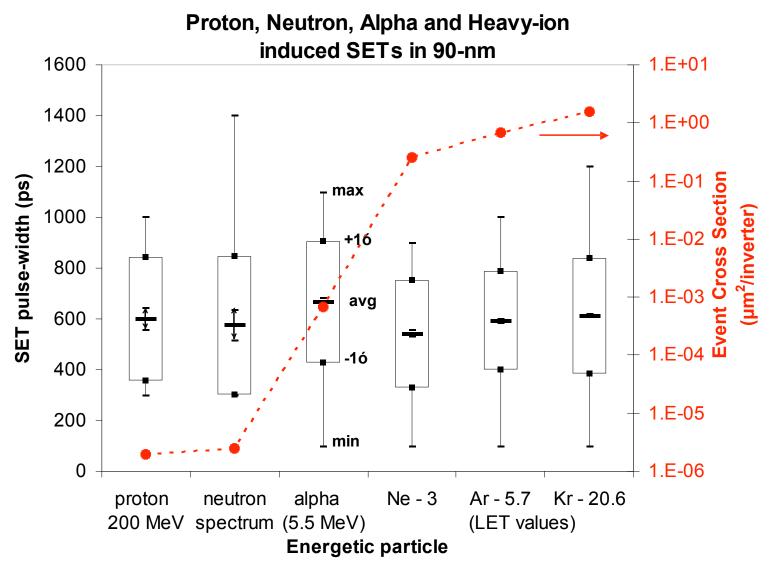
Charge Collection Mechanisms

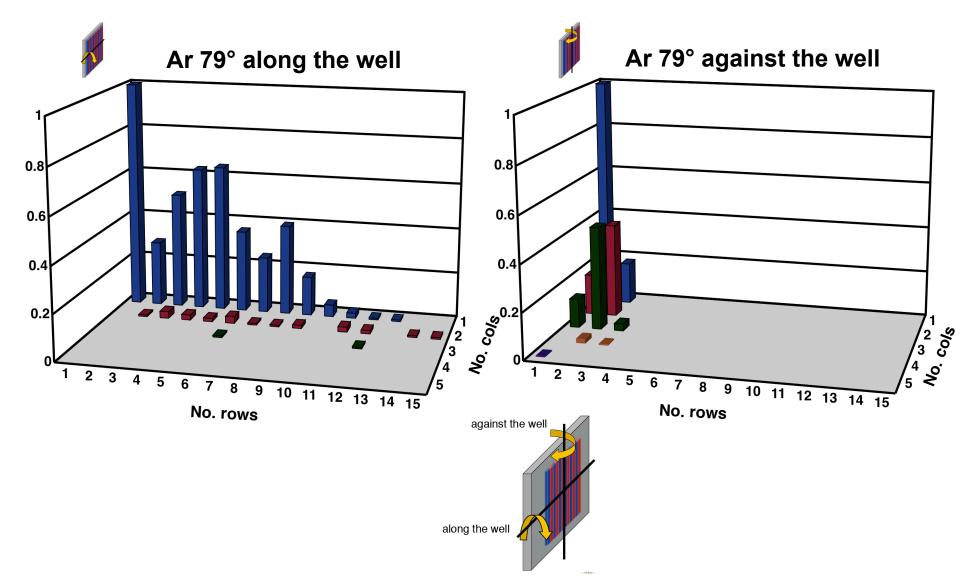






Advanced Rate Prediction





Device Orientation Effects on Multiple-Bit Upset

A few metrics...

- Personnel (2006-07)
 - 16 graduate students
 - 2 post-docs
 - 11 professors
- Publications
 - 51 appeared in print in 2006-07
 - 10 additional accepted