

The Effects of STI Topology and Sidewall Doping on TID-induced leakage current

Nadia Rezzak, M.Alles, R.Schrimpf

Radiation Effects Group

Vanderbilt University, Nashville Tennessee, USA

MURI, June 11th, 2009

Outline

- Motivation
- Background
- □ STI topology 3D, and 2D views
- Effect of sidewall doping
- □ TID response vs. trench recess depth
- Summary

Leakage

Thinner gate oxide shifted dominant TID effect to charge buildup in the STI.

dominant off state drain to source leakage current.

□ Key parameter:

- STI edge topology at the active to isolation transition.
- Doping of the active silicon along the sidewall.

□ Understand and quantify the sensitivity of TID response to STI profile, with varying sidewall doping, at the 90-nm CMOS node.

Motivation

Methodology:

 Apply 3D TCAD simulations to study the effects of variation in the degree of STI trench recess on resulting TID response for a range of sidewall doping.

 Unhardened, "identically" processed lots: Similar, acceptable pre-rad; much different hardness

Variation in:

- Oxide composition
- Edge topology

Significant consideration for use of commercial technologies in rad-hard applications

Background: TID response Variation

Vanderbilt Engineering

- TID response may vary from foundry to foundry [1].
- Amount of recess may vary across a wafer or from lot to lot.
- Process variants may affect TID response e.g., high performance vs. low power.

Leakage current evolution with TID of NMOS core transistor from each foundry [1].

[1]. Gonella, F. Faccio, M. Silvestri, S. Gerardin, D. Pantano, ." Nuclear Instruments and Methods in Physics Research A 582 (2007), pp.750-754.

Background: STI Edge Topology

Topology of transition at gate edge important for leakage (including pre- and post-rad)

Background: Sidewall Doping

Vanderbilt Engineering

- The primary cause for off-state drain-tosource leakage is:
 - The reduction in the threshold voltage
 - The increase in current for the parasitic n-channel MOSFET associated with the edges of the "as drawn" device.
- Doping impacts leakage due to parasitic sidewall transistor.

Planar vs. Recessed trench

 Planar geometry with chamfered (angled) edges to depict the silicon/oxide interface at the sidewall.

Trench recessed by
X = 72 nm with oxide
thinning at the sidewall
corner.

Pre-Rad: Trench Recess Depth

Pre-rad leakage increases with increasing recess (as expected)

Pre-Rad: Sidewall Doping

Lowest well doping level: 10¹⁷ cm⁻³

Post-Rad: Trench Recess Depth

TID simulated by uniform oxide trapped charge density at the silicon/STI interface (N_{ot}) along the entire STI sidewall.

Post-Rad: Trench Recess Depth

TID simulated by uniform oxide trapped charge density at the silicon/STI interface (N_{ot}) along the entire STI sidewall.

Post-Rad: 36 nm Recess with Sidewall Doping

Vanderbilt Engineering

TID simulated by uniform oxide trapped charge density at the silicon/STI interface (N_{ot}) along the entire STI sidewall.

Vanderbilt Engineering

Pre-irradiation for 36 nm recess no sidewall doping

Pre- and Post-irradiation for 36 nm recess at $V_d = 1.2 \text{ V}$

- Normal process variations impact leakage current on submicron technologies.
- Without excess sidewall doping, variation in the TID response may depend on variation in trench fill recess.
 - Sidewall doping >10¹⁸cm⁻³ eliminates sensitivity in simulations.

□ Future work:

- Include non-uniform charge distributions (w/ H. Barnaby).
 - TID testing of devices with purposefully varied trench recess if/when available
 - Consider significance in SOI devices.