Impact of Ion Energy and Species on Single Event Effect Analysis

Vanderbilt University Institute for Space & Defense Electronics

R. A. Reed, R. A. Weller, M. H. Mendenhall K. M. Warren D. R. Ball, J. A. Pellish B. D. Sierawski C. L. Howe, L. W. Massengill, R. D. Schrimpf, M. Alles, A. L. Sternberg, A. F. Witulski, A. D. Tipton

NASA/GSFC

K. A. LaBel, M. A. Xapsos, Paul Marshall (consultant)

BAE Systems

N. F. Haddad, J. Bowman, R. Lawrence,

Sponsoring Agencies: NASA, DTRA, AFOSR, AEDC

OUTLINE

- Brief description of our applications of the RADSAFE concept
- Sample Application

 SEU Rate Predictions
- DURIP Award

Integral Rectangular Parallelepiped Model

Model Calibration **SEU Rate Prediction** 1x10 1x10⁰ Section (um²/bit) Section (um²/bit) Device/Circuit/System ຮູ 1x10⁻³ O Data Virtualization 1x10^{-/} Simulation 1x10⁻⁵ 15 20 10 LET (MeV-cm²/mg) GEO_1-92_SOLARMIN_100MILS.TFX 10^{0} $\frac{1}{2} 10^{-2}$.ằ10⁻ 10⁻⁶ **Radiation Event** l 10⁻¹ Generation ° 10⁻¹² $\underbrace{\sim}{\bowtie} 10^{-14}$ E 10⁻¹⁶ Z > 17, 10^{-18} 103 102 104 10^{1} 10 Kinetic Energy (MeV/nucleon) **Integral over** Response path length Prediction distribution

Examples of Breakdown of Existing SEE Models

Scope of RADSAFE Applications

- On-orbit predictions of SEU rate
 - IBM 5HP SiGe HBT Flip Flop (Georgia Tech, NASA, Auburn)
 - Xilinx FPGA-based SIRF DICE Latch (NASA)
 - IBM 9SF RHBD DICE latch (Boeing, DTRA)
 - Rad-Hard SRAM (NASA, APL)
- Space environment induced single-event upset and multiple-bit upsets in 0.5 μm, 0.25 μm, 130 nm, 90 nm, 65 nm, and 45 nm CMOS SRAMs
 - IBM Trusted Foundry

- Texas Instrument

- Xilinx
- Honeywell

- others

- Sandia

- SET/SEU in SiGe HBTs (Georgia Tech/NASA/Auburn)
- SEGR in power MOSFETs (NASA)
- Transient effects in HgCdTe IR-FPAs and Silicon imagers (NASA)
- Dose enhancement effects
- Terrestrial environment (neutron and alphas) induced single-event upset and multiple-bit upsets in commercial CMOS circuits

RADSAFE

RADSAFE: Rate Prediction for a Rad-Hard SRAM

Observed and Predicted SEU Rate for a Modern RAD-HARD SRAM

- SRAM used on NASA spacecraft
- Observed Average SEU Rate:
 - 1x10⁻⁹ Events/Bit/Day
- Vendor predicted rate using CREME96:
 - 2x10⁻¹² Events/Bit/Day
 - Classical Method nearly a factor 500 lower than observed rate

Ground Testing using Various Ion Energy and Species

Large discontinuities in measured cross section over ion LET

Cross section trends do not follow ion energy

1) R.A. Reed, et. al submitted to 2007 NSREC

2) Dodd, et. al submitted to 2007 NSREC

3) K.M. Warren, et. al IEEE Tr ans. Nuc. Sci., vol. 48, no. 6, Dec. 2005, pp. 2125 - 2131.

4) Dodd et. al RADECS 2006

Ground Testing using Various Ion Energy and Species

- Large discontinuities in measured cross section over ion LET
- Cross section trends do not follow ion energy

1) R.A. Reed, et. al submitted to 2007 NSREC

2) Dodd, et. al submitted to 2007 NSREC

3) K.M. Warren, et. al IEEE Tr ans. Nuc. Sci., vol. 48, no. 6, Dec. 2005, pp. 2125 - 2131.

4) Dodd et. al RADECS 2006

Ground Testing using Various Ion Energy and Species

Si-Nitride 0.4 µm		
SiO2 1.0 μm		
TiN 0.1 μm		
AI 0.84 µm		
TiN 0.1 μm		
SiO2 0.60 μm		
TiN 0.1 μm		
Al 0.45 µm		
SiO2 or W 0.6 µm		
TiN 0.1 µm		
Al 0.45 μm		
TiN 0.1 μm		
SiO2 0.6 μm		
Si 0.25 µm		
	2x2x2 µm³ Sensitive Volume	
50 μm		

- Approximate metalization by multi-layered stack
- Sensitive volume determined from broadbeam testing and technology information

	Si-Nitride 0.4 µm	
	SiO2 1.0 μm	
	TiN 0.1 μm	
	AI 0.84 μm	
	TiN 0.1 μm	
SiO2 0.60 μm		
TiN 0.1 µm		
Al 0.45 µm		
SiO2 or W 0.6 µm		
	TiN 0.1 μm	
	Al 0.45 μm	
	TiN 0.1 μm	
	SiO2 0.6 μm	
	Si 0.25 μm	
	2x2x2 μm ³ Sensitive Volume	
-	50 μm	

High-Z materials must be included to accurately predict energy deposition profile

K.M. Warren, et. al IEEE Trans. Nuc. Sci., vol. 48, no. 6, Dec. 2005, pp. 2125 - 2131.

RADSAFE Prediction of SEU Cross Section

Si-Nitric	e 0.4 μm
SiO2	l.0 μm
TiN (.1 µm
AI 0.	4 μm
TiN (.1 µm
SiO2	.60 μm
TiN	.1 µm
AI 0.	15 µm
SiO2 or	W 0.6 µm
TiN	.1 μm
AI 0	45 µm
TiN	.1 μm
SiO2	0.6 µm
Si 0	25 μm
Direct 2x2x2 µm ³ Sensitive Volume	
≼ 50 μm▶	

K.M. Warren, et. al IEEE Trans. Nuc. Sci., vol. 48, no. 6, Dec. 2005, pp. 2125 – 2131.

- Run 1x10⁹ particle
 - For each determine energy deposited in sensitive volume
- Histogram of energy deposition
- Reverse integrate histogram
- Divide counts by fluence
- For a fixed critical energy, the SEU cross section can be predicted

Determine Modeled Critical Energy for Kr @ 387 MeV

Si-Nitrio	϶ 0.4 μm
SiO2	l.0 μm
TiN (.1 µm
AI 0.	4 µm
TiN (.1 µm
SiO2	.60 μm
TiN	.1 µm
AI 0.	1 5 μm
SiO2 or	W 0.6 µm
TiN	.1 μm
AI 0	45 µm
TiN).1 μm
SiO2 <mark>0.6</mark> µm	
Si 0	25 μm
Direct 2x2x2 µm ³ Sensitive Volume	
■ 50 μm	

Contribution From Secondary Products in Overylaying Materials

Si-Nitric	e 0.4 μm
SiO2	l.0 μm
TiN (.1 µm
AI 0.	4 μm
TiN	.1 µm
SiO2	.60 µm
TiN	.1 µm
AI 0.	45 μm
SiO2 or	W 0.6 µm
TiN	.1 µm
AI 0	45 µm
TiN	.1 μm
SiO2 <mark>0.6</mark> µm	
Si O	2 <mark>5</mark> μm
Direct 2x2x2 µm ³ Sensitive Volume	
≼ 50 μm▶	

Determine Range for Modeled Critical Energies (i.e. Critical Charge)

Si-Nitrid	0.4 µm
SiO2 ⁴	.0 µm
TiN 0	<u>1 µm</u>
AI 0.8	4 µm
TiN 0	<u>1 μm</u>
SiO2 (60 μm
TiN (1 μm
AI 0.	5 µm
SiO2 or	N 0.6 μm
TiN (.1 µm
AI 0.	l5 μm
TiN	.1 µm
SiO2).6 µm
Si 0.2	25 μm
Direct Direct 2x2x2 µm ³ Sensitive Volume	
sυ μι	m

Determine Range for Modeled Critical Energies (i.e. Critical Charge)

Si-Nitric	e 0.4 µm
SiO2	1.0 µm
TiN	.1 µm
AI 0.	34 µm
TiN	.1 µm
SiO2	.60 μm
TiN	.1 µm
AI 0	45 µm
SiO2 or	W 0.6 μm
TiN).1 μm
AI 0	45 µm
TiN).1 µm
SiO2 <mark>0.6</mark> µm	
Si 0	25 µm
Direct 2x2x2 µm ³ Sensitive Volume	
50 μm	

Uncertainty in Q_{crit} is due to:

- Systematic errors in Geant4 physics when predicting recoil production from nuclear reactions.
- Use of simple model for SEU sensitive volume.

RADSAFE Prediction of SEU Rate

Observed and RADSAFE Predicted SEU Rate for a Modern RAD-HARD SRAM

- SRAM used on NASA spacecraft
- Observed Average SEU Rate:
 - 1x10⁻⁹ Events/Bit/Day
- RADSAFE rate (includes reaction products):
 - Between 1.3x10⁻¹⁰ and 1.3x10⁻⁹ Errors/Bit/Day

Conclusions

- Clearly, heavy ion energy and species impact SEU response
 - Most obvious in circuits that are not sensitive to direct ionization effects from "low" LET particles and contain higher Z materials
- There is no reason to expect an increase SEU cross-section with increasing ion energy
 - Different mechanism dominate at different ion energies
 - LET and Effective LET concepts will not be valid for certain cases
- RADSAFE concept can be used to predicting error rates
 - Systematic errors can be large
 - Improvements in Geant4 nuclear physics models are needed
- Clear impact on heavy ion test methods
 - More research is needed to clearly define the recommendations
 - e.g., Fluences > 10⁷ particles/cm², ion energy, species, and angle
- Ion energy and species will impact other SEEs
 - Single-event latchup for example

DURIP-funded High-Speed SEE Test Equipment

- 12.5 Gbit/s bit error rate tester
- 31.5 GHz analog signal generator
- 12 GHz real-time digital storage oscilloscope
- DC-40 GHz RF coax assemblies
- Requires high-speed packaging

- DC-40 GHz probe station
- 100 nm-step resolution stage
- Configure horizontally or vertically
 - NIR laser irradiation
 - Broadbeam heavy ion
- Eliminates need for high-speed packaging