Induced Leakage Currents

M. J. Beck^{1,2}, N. Sergueev¹, <u>Y. S. Puzyrev¹</u>, K. Varga¹, R. D. Schrimpf³, D. M. Fleetwood³, S. T. Pantelides^{1,3,4}

¹Dept. of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235 ²Dept. of Chemical & Materials Engineering, University of Kentucky, Lexington, KY 40506 ³Dept. of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN 37235 ⁴Oak Ridge National Laboratory, Oak Ridge, TN

2009 MURI Review

Multi-scale calculation

From QM transport to I-V device characteristics

SEGR in SiO₂

- L =1.4 nm
- Defect energy levels
- Defect atomistic map

time = 78fs 22 defects

Leakage Current Temperature Dependence

2009 MURI Annual review, Vanderbilt University, June 10 2009

Direct comparison with experiment

Massengill, et al., IEEE TNS 48 1904 (2001)

Model results in real-time defect evolution and transient currents

- 3D Mott defect-to-defect calculation of leakage currents
- Low-resistivity paths through oxide layers
- Displacement damage lead to appreciable current

Multi-scale calculation

From QM transport to I-V device characteristics

