ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA

Sokrates T. Pantelides

Department of Physics and Astronomy

Vanderbilt University, Nashville, TN

and

Oak Ridge National Laboratory, Oak Ridge, TN

The theory team:

Matt Beck, Sasha Batyrev, Leonidas Tsetseris, Oscar Restrepo, Apostolos Marinopoulos, Blair Tuttle

In collaboration with the rest of the MURI team

AFOSR/MURI REVIEW 2008

THEORY OBJECTIVES

- DISPLACEMENT DAMAGE
 - > Defects, charging
 - ➢ electrons
- ROLE OF HYDROGEN, OXYGEN VACANCIES
- ALTERNATE DIELECTRICS

Interface structure, interface defects, NBTI,...

• CARRIER MOBILITIES, LEAKAGE CURRENTS

FROM ATOMIC-SCALE PHYSICS TO ENGINEERING MODELS

Atomic-scale physics: DENSITY FUNCTIONAL THEORY

- PSEUDOPOTENTIALS, SUPERCELLS
- TOTAL ENERGY, FORCES ON ATOMS
 - Stable defect configurations
 - Bulk, interface
 - Reaction energies, activation barriers
- EVOLUTION OF SYSTEM

electrons in instantaneous ground state vs

electrons allowed to evolve freely

THEORY OBJECTIVES

• DISPLACEMENT DAMAGE

TALK BY M. BECK

Defects, charging

> electrons

- ROLE OF HYDROGEN, OXYGEN VACANCIES
- ALTERNATE DIELECTRICS

Interface structure, interface defects, NBTI,...

• CARRIER MOBILITIES, LEAKAGE CURRENTS

FROM ATOMIC-SCALE PHYSICS TO ENGINEERING MODELS

LAST YEAR: Displacement damage in silicon

<u>25 eV kick</u>

Snapshot after 100 fs

Red (hot) atoms: KE > 0.22 eV Black atoms: displaced > 0.2 Å

LOW-ENERGY RECOIL DYNAMICS IN AMORPHOUS SiO₂

THEORY OBJECTIVES

- DISPLACEMENT DAMAGE
 - > Defects, charging
 - > electrons
- ROLE OF HYDROGEN, OXYGEN VACANCIES TALK BY BATYREV
- ALTERNATE DIELECTRICS

Interface structure, interface defects, NBTI,...

• CARRIER MOBILITIES, LEAKAGE CURRENTS

FROM ATOMIC-SCALE PHYSICS TO ENGINEERING MODELS

THEORY OBJECTIVES

- DISPLACEMENT DAMAGE
 - > Defects, charging

➤ electrons

• ROLE OF HYDROGEN, OXYGEN VACANCIES

• ALTERNATE DIELECTRICS

Interface structure, interface defects, NBTI,...

FROM ATOMIC-SCALE PHYSICS TO ENGINEERING MODELS

Amorphous Modeling

 $Si-SiO_2$ with Si-H bonds

216-atom amorphous SiO₂

ATOMIC-SCALE ROUGHNESS

Si SiO₂

OXYGEN PROTRUSION

SUBOXIDE BOND

Mobility Enhancement

Data from bulk MOSFETs or SOI MOSFETs with t>5 nm

Experiment: Zupac, Galloway, and Schrimpf, 1992

Oxygen vacancies in SiO₂

Revisit oxygen vacancies in SiO₂

ALTERNATIVE MODELS FOR E_{δ}'

Si_2 defect

Si₅ defect

Buscarino et al. 2005, 2006

Energy vs [SiSi] bond length

Isotropic Hyperfine Results

* Both Si₂ & Si₅ defects consistent with HF data

* Si₅ Defect has extra peak at 2 mT buried in central region

Atomic Structure

- Si₅ defect has one main HF active atom !
- Barrier for switching <0.6 eV

PREDICTION TO TEST: EPR AT LOW TEMPERATURE

Energy Cost/Gain to form O vacancy Clusters

• Quartz Results:

$$- E(4V_o) = 4E(V_o) + 0.05 \text{ eV} / V_o$$

• Amorphous Silica Average Results:

$$- E(4V_o) = 4E(V_o) - 0.07 \text{ eV} / V_o$$

• Amorphous Silica Minimum Results:

$$- E(4V_{o},Min) = 4E(V_{o},ave) - 0.32 eV / V_{o}$$

Energy Cost of Sub-Oxidation

A. Bongiorno and A. Pasquarello, Phys. Rev. B (2000).D. R. Hamann, Phys. Rev. B (2000).

ENERGY LEVELS OF Si₂: 0.3-0.4 eV ENERGY LEVELS OF Si₅: 1-2 eV

ENERGY LEVELS OF $\mathbf{E}'_{\tilde{a}}$: 3-4 eV

Warren et al. 1994

CONCLUSIONS ABOUT O VACANCIES

• Si_5 MODEL VIABLE FOR E_a^\prime ,

BUT MUST BE TESTED FURTHER

• LOW-TEMPERATURE EPR

• ENERGY LEVEL MEASUREMENTS