VANDERBILT UNIVERSITY

School of Engineering

Single-Event Transient Pulse-Width Measurements in Advanced Technologies

Balaji Narasimham

MURI Review Meeting May 13, 2008

Supported in part by the DTRA Rad-Hard Microelectronics Program

Motivation

Vanderbilt Radiation Effects Group

School of Engineering

- Combinational logic soft errors major reliability issue in advanced CMOS processes
- Knowledge of SET pulse widths key to determining error rates
- Novel test circuit used for measurements of heavy-ion, neutron, proton and alpha SET widths in 130-nm and 90-nm
- Results indicate SET widths increase with scaling and are comparable to legitimate logic signals

- SET pulse width & clock frequency determine circuit vulnerability
- Measurement difficulty
 - Pulse width in pico-second time scales external measurement complex/costly
 - Random nature of ion strikes external trigger signal cannot initiate measurement
- Developed on-chip self-triggered pulse measurement
- Statistical distribution of SETs measured in 130-nm and 90-nm with heavyions, neutrons, protons and alpha particles

- Upsets after the trigger stage are not measured
- Most single latch upsets (due to direct strikes on the latch) are identifiable and SET width data not affected

MURI Review

Broad Distribution in SET Widths

Vanderbilt Radiation Effects Group

School of Engineering

Width of SET pulses depend on several factors

- Energy of incident ion
- Location of strike with respect to sensitive drain
- Technology effects of pulse generation (charge collection characteristics)
- Circuit effects on pulse propagation
- Results in broad distribution of SET pulses for each radiation environment
- Our technique precisely characterizes this statistical distribution of SET pulse widths

Heavy-lon – 130-nm & 90-nm

Vanderbilt Radiation Effects Group

 Results indicate increasing SET pulse widths with scaling → important as latch setup/hold times decrease with scaling → more SETs latched as error

May 13, 2008

School of Engineering

Cross Section Comparison

Vanderbilt Radiation Effects Group

School of Engineering

Event cross section dominated by pulses between

- 300 ps to 700 ps in 130 nm
- 400 ps to 900 ps in 90 nm

Increase in wider transients translates to higher error rates with scaling

Neutron-Induced SETs

Vanderbilt Radiation Effects Group

School of Engineering

- Tested six 90-nm ICs at WNR facility at LANL
- Energy spectrum matches sea-level spectrum for energies from 10 to 500 MeV
- Neutron fluence 1.33×10¹¹ neutrons/cm²
- Neutron SET cross-section ~ 2.5 × 10⁻⁶ μm²/inverter

Alpha-Induced SETs

Vanderbilt Radiation Effects Group

School of Engineering

- Alpha tests at Tl using foil of Am²⁴¹
- Energy ~ 5.5 MeV
- Fluence ~ 4.45×10¹⁰ alphas/cm²
- Total events measured ~ 300

Alpha SET cross section ~ 6.74 × 10⁻⁴ µm²/inverter

Proton-Induced SETs

Vanderbilt Radiation Effects Group

Tests conducted at Indiana Univ with 200 MeV protons

- Proton SET cross-section ~ 2 × 10⁻⁶ μm²/inverter
- Results indicate that proton angle of incidence does not affect SET width distributions

Comparison – Energetic Particles

Vanderbilt Radiation Effects Group

School of Engineering

Similarity in SET Distributions Vanderbilt Radiation Effects Group School of Engineering energetic particle strike charge collected $-P_1$ Ρ, charge Proton, Neutron, Alpha and Heavy-ion cloud induced SETs in 90-nm 1600 1.E+01 1 Δ resulting SET 1400 1.E+00 1200 1.E-01 5 N_1 SET pulse-width (ps) N_2 max um⁴/inverter) 1000 800 1.E-03 Ö avg Ŧ ŧ energetic 600 particle strike 1.E-04 **ú** -1ó 400 charge collected $-P_1$ 1.E-05 200 charge___ diffusion charge $-P_{2}$ min cloud 0 1.E-06 Ar - 5.7 Kr - 20.6 proton neutron alpha Ne - 3 200 MeV spectrum (5.5 MeV) (LET values) resulting SET **Energetic particle** width reduced N

- Less variation in SET pulse widths for different particle types probably due to carrier redistribution and charge sharing effects
- Preliminary simulations indicate charge spread and diffusion collection by subsequent gate may limit SET widths

Other Applications

Vanderbilt Radiation Effects Group

- Test circuit can help quantify effects of process or layout variations on single events
 - Circuit was used for quantifying effect of guard bands in mitigating long SETs
- Characterization of effect of charge spread on SET width distributions
 - Tested with ions incident from different directions with respect to n-well layout
 - Interleaved inverter chains have been designed to further analyze charge spread effect

Well Contacts and Guard Bands

Vanderbilt Radiation Effects Group

School of Engineering

Characterizing Guard Bands

Vanderbilt Radiation Effects Group

School of Engineering

- Events > 1ns reduced by ~72% for circuits with GB + HDWC
- Reduction in frequency and max SET width attributed to reduction in parasitic bipolar effect

MURI Review

- Resolve controversy on expected pulse widths
- Quantify technology trends in SET pulse widths
- Characterize effect of RHBD structures such as multiple well contacts and guard bands on SET pulse widths
- Determine effect of charge sharing on SETs
- Technique can also be used to measure other spurious signals such as cross-talk pulses

Conclusion

Vanderbilt Radiation Effects Group

- Autonomous SET characterization technique developed and implemented to obtain precise distributions of heavy-ion, neutron, proton and alpha induced SET widths in 130-nm/90-nm CMOS
- Width and range of dominant SETs increase with scaling
- Neutron and alpha particle induced SETs are of order of legitimate logic signals – concern for commercial applications
- High density well contacts and guard bands helps reduce more than 70% of SETs longer than 1 ns

MURI Review