

Fin-Width Dependence of Ionizing Radiation-Induced Degradation in 100-nm Gate Length FinFETs

Farah E. Mamouni, Ronald D. Schrimpf, Dan M. Fleetwood, Robert A. Reed, Sorin Cristoloveanu, and Weize Xiong

Farah El Mamouni

Vanderbilt MURI meeting, May 10th & 11th 2009

1

OUTLINE

- FinFETs
- Previous work
- Experimental details
- Experimental results and discussion (A)
- The impact of the number of fins on the I_d-V_{gs} of multi fins FinFETs
- Experimental results and discussion (B)

- The threshold voltage (V_{th}) decreases with the fin width in irradiated FinFETs

• The subthreshold Swing (SS) increases with the the fin width in irradiated FinFETs

- Conclusion
- Future work

 \bigcirc

PREVIOUS WORK

[2] M. Gaillardin, R. Paillet, V. Ferlet-Cavrois, O. Faynot, C. Jahan, and S. Cristoloveanu, "Total ionizing dose effects on triple-gate FETs," *IEEE Trans. Nucl. Sci.*, vol. 53, pp. 3158-3165, Dec 2006.

Farah El Mamouni

EXPERMENTAL DETAILS (1/2)

Device details

EXPERMENTAL DETAILS (2/2)

Measurement conditions

In-situ irradiations and I-V measurements for all FinFETs were performed without removing the probes from the wafers.

Farah El Mamouni

EXPERIMENTAL RESULTS AND DISCUSSION (A)

Farah El Mamouni

EXPERMENTAL RESULTS (A1)

A <u>Non Uniform Subthreshold Slope (NUSS</u>) in the I_d -V_{gs} slope has been observed in some of the 2 fins FinFETs for the <u>100 nm</u> gate length devices.

Farah El Mamouni

EXPERMENTAL RESULTS (A2)

A <u>Non Uniform Subthreshold Slope (NUSS</u>) in the I_d -V_{gs} slope has been observed in some of the shorter (90 nm) 2 fins FinFETs as well.

Farah El Mamouni

FIN TO FIN VARIABILITY (1/2)

Farah El Mamouni

FIN TO FIN VARIABILITY (2/2)

 \square Composite I_d - V_{gs} of two parallel (Fig. a) and 8 (Fig. b) planar NMOS SOI transistors simulated using T-Spice.

 $\hfill\square$ In these simulations the transistor width (W), the threshold voltage (V_{th}) and the channel length (L) were varied.

W_min	50 n
W_max	3 µm
Vth_min	0.3 V
Vth_max	0.4 V
L_min	1 µm
L_max	1.15 µm

EXPERIMENTAL RESULTS AND DISCUSSION (A)

Farah El Mamouni

EXPERMENTAL RESULTS (B)

NARROWER FINFETS SHOW HIGHER TOLERANCE TO TID EFFECTS, smaller V_{th} shifts

NARROWER FINFETS SHOW HIGHER TOLERANCE TO TID EFFECTS, smaller V_{th} shifts

10th & 11th 2009

NARROWER FINFETS SHOW HIGHER TOLERANCE TO TID EFFECTS, smaller SS shifts

Vanderbilt MURI meeting, May 10th & 11th 2009

17

ANNEALING EXPERIMENTS

The positive shift of the I_d - V_{gs} curves during annealing is a signature of the non uniform trapped charge in the BOX.

Farah El Mamouni

> The composite I_d - V_{gs} curves in 20 fins FinFETs is averaging over a large number of fins which induces better slopes quality whereas a non uniform SS is obtained for 2 fins samples where the variability from fin to fin is affecting the maximum the device's behavior.

> FinFETs with wider fin width (80 nm) behave more like planar devices with larger threshold voltage shifts and greater subthreshold swings.

> The lateral-gates in narrower fin width devices, control the surface potential at the back interface (fin-BOX), reducing the impact of both the vertical coupling effect and the fringing fields originating from the drain terminal.

> Annealing at room temperature of irradiated FinFETs confirm that the observed stretch-out in the SS curves for wider devices is due to non-uniform radiation-induced oxide trapped charge.

Farah El Mamouni

FUTURE WORK

□ Study the fin width dependence in irradiated P-channel FinFETs (if time permits).

□ Use more convenient models (with parameters closers to the actual FinFETs parameters used in this work) to simulate the number of fins's impact on the I_d - V_{qs} curves.

Farah El Mamouni