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outline

i) mono- and di-vacancy defects in HfO2
if) monoclinic HfFO2 and HfSiON on Ge



objective - provide a science base for optimization
of HfO2 and Hi Si oxynitride dielectrics
for survivable devices, rad hard on Si and Ge substrates

X-ray absorption and photoemission spectroscopies, XAS
and SXPS,

conduction and valence band electronic states
band edge, intrinsic and chemical defects

defects, and dependence on processing are then compared
with defects, traps and fixed charge, detected electrically



relationship to
CMOS

(i) define and narrow the field of high-k dielectrics
that meet the aggressive scaling required deep
sub-micron- and nano-CMOS, and
(ii) identify processing constraints that apply to
Ge and Si substrates

rad testing

(i) differences in rad hardness/survivability of
generically similar dielectrics
HfO2 and Hf Si oxynitride on Si and Ge substrates
and correlations with



DEFECTS IN DIELECTRICS

1. Why do we care? Leakage paths,
breakdown points, trapping centers in
radiation damage. Mostly oxygen vacancies

2. Nature of defects----intrinsic or processing
dependent ?

3. Vacancies are hard to “see”---positrons,
energetic electron displacement, material
contraction. This work-x-ray, electron
spectroscopy!

4. Oxygen vacancies plague all of the current
oxide work!
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ate, Eg, groups as determined by the coordination and local symmetry of th
with respect to their O-atom neighbors, and then (2) the removal of these twc
old degeneracies by Jahn-Teller (J-T) bonding distortions that are accompani
v reductions at the TM atom bonding sites [12,20]. See Figure 10.1 for a sche
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matic representation of C-F and Jahn-Teller splittings for Ti relative to the fivefold degenerate
fate: (a) the atomic Ti 3d state; (b) in an ideal octahedral field; and (c) in a distorted octahedral fie
>y scale is arbitrary, i.e., the energy of the triply degenerate T»g state has been set to 4 eV.




electronic structure of transition metal oxides - FA Cotton

bonding and anti-bonding states - symmetry adopted linear
combinations of atomic states/symmetries of
constituent atoms

ionic model
valence band occupied O 2p ¢ and &t conduction band
empty states Ti 3d 4s, 4p for 6-fold coordination TiO2
empty states Hf 5d 6s, 6p, 5f for 7/8-fold coordination HfO2
conduction band empty states not restricted to
atomic valence state

valence states - 0% O 2s2?, 2p?
Ti** Ti 3s2,3p° d° configuration, no occupied d-states
Hf** Hf 5s2,5p® d° configuration, no occupied d-states



partially ionic model
bonding and anti-bonding states - symmetry adopted linear
combinations of atomic states/symmetries of
constituent atoms

valence-conduction band transitions - O 2p - O 2p*,
each mixed with either Ti or Hf states



schematic molecular orbital diagram for TiO2
6 fold-coordinated Ti4* ions, and 3 fold-coordinated O?% ions

covalent mixing of Ti and O atomic states in symmetry adapted
molecular orbital states, SALCs - FA Cotton, 1962

Ti* TiO, SALC's 20> I OK
Tl TO2 edge
Alg(()‘*)
E (%)
T, ()
I~— 2p
— 2s
A, (0), E(0), local bonding description is "proven"

T, (0) =——

approach for comparing
theory and experiment for TM oxide d-states



schematic representation of local bonding in
monovacancies and divacancies

(a) mono-vacancy defect (b) monovacancy defect
in TiO2 in HFO2
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theory-supported model for vacancy defects
charge neutrality each O-atom - replaced by 2 electrons
Robertson/Shluger distribute these electrons over
d-states of all nearest-neighbor Hf or Ti atoms:
theory - d-states, not contributing to bonding, are occupied digitally
d" representation - n is the number of d-electrons
not contributing to bonding
determined by formal valence of TM in ionic model

HfO2 Hf atom valence electrons - 6s25d2
TiO2 Ti atom valence electrons - 4s23d?
Hf%*, Ti4* are d? after 4 electrons are removed
no occupied states above VB edge

defect states - equivalent to pairs of T3* - 4s23d’
with one occupied d-state - 2d' or 1d?

(mono)-vacancy defects for TiO2 are d?
2 occupied states at valence band edge

divacancy defects for HfO2 are d*



defect states for d? “fit” into band gap: TiO2
Egap = 3.1 eV >A(C-F) = 2.6+0.1eV
HfO2 Egap = 5.7 eV >A(C-F) = 3.6%£0.2eV
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Micro-structure of nano-crystalline HfO2 and
non-crystalline Hf silicates and nitrided Hf silicates

nano-crystalline HfO2 amorphous Hf silicate
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k‘!L‘A A isotropic and homogeneous
no discernable granularity

band tail states due to random local

crystallite size: 2 to 100 nn at?m'c structure
grain boundaries - intrinsic bonding localized defect states
defects generally deep in gap

local defects at band edges specific bonding defects
trap both holes and electrons broken bonds - chemical impurities

grain boundaries



Spectroscopic evidence for band edge defects in HfO2
Soft x-ray photoelectron spectroscopy (SXPS)
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intrinsic defects in elemental and complex TM oxides
have occupied valence band edge states

rules out Robertson and Shluger mono-vacancies models



K. Xiong, J. Robertson, S.J. Clark, APL 87 (2005)
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FIG. 2. Summary of calculated energy levels of the relaxed O vacancy and
interstitial, in their various charge states.

[Vo]- and [V,]° are the intrinsic bonding defects
Robertson suggests are identified spectroscopically
and in electrical measurements, but does not explain valence
band edge defects



intrinsic defects in elemental and complex TM oxides

are O-atom vacancies
two issues -- (i) single atom vacancies - mono-vacancies, or
double atom vacancies di-vacancies as in c-Si
(i) mobile, or fixed or immobile
both resolved spectroscopically

occupied defects at valence band edge
rules out Robertson and Shluger mono-vacancies models



defect density is a function of film thickness - correlates with
splitting of Eg d-state feature
larger grains in 4 nm thick film- defect density 10x higher
than 2 nm thick film
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fewer and qualitatively different defects in 2 nm film
mobile defects less effective in holding charge
than immobile defects



energy level diagram for occupied and empty defects states:
(left) spectroscopic energies referenced to valence band
edge, WRONG!
(right) empty state energies referenced to
d-d’transitions from occupied states above valence band

conduction band
band gap 5.8 eV

VUV SE
XAS

empty states

defect states |

occupied states -

SXPS

valance band
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="removal of Ge dielectrics between Ge and HfO2
textured epitaxial alignment between HfO2 and Ge(001)

=old clean - acidic -- Hf/H20 6 cycles - ‘thick’ GeO2
"new clean - neutral/basic - ‘thinner’ GeO2
melectrical results



dielectrics on Ge a “devious” pathway to
eliminate Ge-O and Ge-N bonding

surface nitridation

GeOx - plasma or chemical

Ge (001) substrate

remote plasma HfO2/TiO2

surface nitridation

GeOx - plasma or chemical

Ge (001) substrate

pre-deposition Ge passivation
to prevent active plasma O/Hf/Ti
from reacting with
at Ge surface during deposition

remote plasma deposition of
HfO2/TiO2 at 300°C

Ge passivation
prevents active plasma O/Hf/Ti
from reacting with
at Ge surface during deposition

chemical = pre-deposition cleans
=old clean - acidic -- Hf/H20 6 cycles - ‘thick’ GeO2
"new clean - neutral/basic - ‘thinner’ GeO2



post deposition annealing in Ar ambient
(i) two step 550°C / 800°C or (ii) single step 800°C

remote plasma HfO2/TiO2

nano-grain growth - textured film

epi-regrowth Ge

Ge (001) substrate

Ge-O sublimes ~400-500°C
Ge-N decomposes ~600-650°C

solid phase epi-regrowth
of Ge on Ge substrate
nano-grain “reorganization”
textured films with “c-axis”
aligned relative to dimer rows
of Ge substrate

we will focus on two aspects of this process

i) verification of process variations that result in HfO2 and HfSiON
in “direct contact” with Ge(0001); i.e., no detectable Ge dielectrics
forming an interfacial transition region

ii) relationship between processing and defects extracted from
MOSCAP test devices
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Capacitance-voltage (CV) for n-MOSCAPS 5nm HfSiON on n-
type Ge (100): normalized by C/Cox, as a function of PDA
temperature-arrows indicate clockwise hysteresis loop.
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conclusions with respect to

CMOS
(i) HfFO2 and Hf Si oxynitride on Si: there is a direct

correlation between intrinsic bonding defects observed

in spectrsocopic studies with those obtained in electrical
measurements on MOSCAPs

(i) HfFO2 and Hf Si oxynitride on Ge: due to limitations on
processing temperatures, generally lower than 800C, often
more restrictive to 650C, CMOS applications are generally

more limited
currently been pursued

rad testing

CMOS - first important result under DTRA
radiation induced defects can be observed
spectroscopically in XAS, spectroscopic ellipsometry
and cathodoluminescence spectroscopy



plans for next year

(i) prepare MOSCAPs on Ge(100) and Si/SiON/ substrates for
rad testing using optimized Hf Si Oxynitride composition
(HfO2)0.3(Si02)0.3(Si3N4)0.4

(ii) fabricate stacked HfO2/HfSiON on Ge(100) MOSCAPs
using the HfSiON as a thin interfacial transition and
compare electricals with HfO2 and HfSiON on Ge(100)
determine defect concentrations, and electrical stress
induced defects

(iii) Based on results from (ii) prepare another set of
MOSCAPs for rad testing and compare defects inducted by
radiation and electrical stress

(iv) perform spectroscopic studies to compare electrically
active defects with defects observed spectroscopically



Gerry Thanks You
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HfO 2nm/RPAN/basic clean Ge
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Intensity (Arb. Unit)
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XAS O K, edge: top (a) HfO, on Ge-(b) HfSiON on Ge BottomL 2nd
derivative O K, edge. Gaussian fits: energies 2nd derivatives give, crystal
field (C-F) splittings Jahn-Teller (J-T) d-state degeneracy removal:
molecular orbital labels: local bonding symmetry-group theory.
defect states below the conduction band edge ~ 530 eV from 2nd
derivative spectra - Gaussian fits next slide
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Defect Absorption (Arb. Unit)
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Differences Between Charge Trapping States in Irradiated
Nano-crystalline HfO, and Non-crystalline Hf Silicates

G. Lucovsky,' S. Lee,! H. Seo,! R. D. Schrimpf,2 D. M. Fleetwood,?
J. A. Felix,? J. Luning,* L. B. Fleming,! M. Ulrich,! and D. E. Aspnes’

'Department of Physics and Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27695, USA
2Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37235, USA
3Sandia National Laboratories, Albuquerque, New Mexico
87185-1083, USA
4Stanford Synchrotron Radiation Laboratory, Menlo Park, CA 94025,
USA

Supported in part by ONR, SRC, and an AFOSR MURI

3Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL185000.



Outline

« Experimental results on hole and electron trapping
 Hf silicate (amorphous)
« HfO, (nano-crystalline)

 New spectroscopic evidence
* Hf and other group IV B oxides
« Soft x-ray photoelectron spectroscopy (SXPS)

* Insight into differences into electron and hole trapping

* New promise for advanced high-k dielectrics



Radiation response of Hf Silicate capacitors
Mostly hole trapping in oxide
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J. A. Felix, D. M. Fleetwood, R. D. Schrimpf, J. G. Hong, G. Lucovsky, J. R. Schwank, and
M. R. Shaneyfelt, IEEE Trans. Nucl. Sci., vol. 49, pp. 3191-3196, 2002.



Radiation response of HfO, capacitors
Both hole and electron trapping
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Microelectron. Reliab., vol. 44, pp. 563-575, 2004.



Micro-structure of nano-crystalline HfO2 and
non-crystalline Hf silicates and nitrided Hf silicates

nano-crystalline HfO2 amorphous Hf silicate
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no discernable granularity

band tail states due to random local

crystallite size: 2 to 100 nn at?m'c structure
grain boundaries - intrinsic bonding localized defect states
defects generally deep in gap

local defects at band edges specific bonding defects
trap both holes and electrons broken bonds - chemical impurities

grain boundaries



Spectroscopic evidence for band edge defects in HfO2
Soft x-ray photoelectron spectroscopy (SXPS)
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Intrinsic band edge defect states function as electron and
hole traps in a radiation or high-field stress environment
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Mechanisms during post-rad/CVS NBTS
on HfO, capacitors

@ (Zhou et al., G-5) HO,
NBTS
SiO,N,
H
/‘ Si-sub

Dipole Charge
In HfO, H*

(1) (2) (3) (4)

(post-rad) (post-CVS/rad) (post-CVS/rad) (post-CVS/rad)




Ultra-thin HfO, is a
valid engineering solution for advanced devices

™ N\
band edge states change ¢ f\/ \
dramatically RS
in ultra-thin HfO2 thin films  § _J=".. =
for < 2 nm physical thickness -"

x-ray photon energy (eV)

no Jahn-Teller effects and no
band edge states in SXPS

Sematech, and ST Micro
report dramatic drops in
defects as well



Ultra-thin phase separated 80% HfO,: almost promising
(nano-crystalline HfO2 with nano-scale SiO2 inclusions)

T
O Ky /N
038t silicate
80% HfO,

band edge J-T term-splittings ; .
suppressed by small sizes < [
(<2 nm) in nano-crystalline (™ | /

grains due to SiO2 inclusions *°= _j//eg
e’

2 nm thiCK spectra same as 528 530 ] 532h t534 536( V)538 540
2 nm thick HfO2 on last slide

3/

N
;)

4 nm thick sample - grains
are anisotropic in growth
direction -- therefore
narrowing of Eg feature

We await results from electrical tests in full devices!



Summary and Conclusions

Hf silicate and HfO, gate dielectrics show
differences in electron trapping

Spectroscopic evidence shows enhanced
electron trapping in HfO, caused by nano-
crystallinity

Significant issue — especially for combined
radiation/reliability response

New Hf, Zr oxynitrides and thin HfO, films (with/
without SiO, inclusions) may be promising for
highly scaled, future technologies

— Spectroscopic studies show absence of
electron traps

— Await the results of fully processed devices



schematic representation of immobile and mobile
vacancy defect bonding

removal to one neutral O-atom - 2 electrons/O in vacancy site

‘ immobile mobile

TiO2 local bonding in distorted rutile
TiO:2 : :
geometry -- 6 fold coordinated Ti and
. . ‘ ‘ 3 fold coordinated O
£\ . A\

immobile 3 Ti; mobile 2Ti

j
HfO2

ki S HfO2 local bonding in distorted

fold bonded defect tn Tz CaF2 geometry -- 8 fold coordinated
Hf and 4 fold coordinated O

immobile 6 Hf; mobile < 6Hf, e.g.,
4 or 5 Hf



mono-vacancy (or simply vacancy) defects
2 states at band edge in SXPS TiO2 - consistent with d? description
XAS pre-edge & virtual bound state regimes - additional confirmation
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Bﬁﬁ&acanc}‘f&hﬂﬂ
bondedd efec’ iO2 and di-vacancy
6-fold bonded defect in HfOz

mono-vacancies are d? -- di-vacancies are d*
difference between immobile and mobile - spectral widths proportional
to crystal field - number of atoms bordering on defect



summary of d-d' transitions* for HfO2 d* divacancies and
TiO2 d? mono-vacancies

A A A A _
[ ]
=l ﬁ _
[ 1]
- e
HfOz2 d4 TiO2 d?(b) TiO2 d2?(a)
divacancy monovacancies

HfO2 immobile and TiO2 (a) = mobile and (b) = immobile

*common mistake -- assumption that these transitions originate at
top of VB places the final states to deep in the gap (SEMATECH group
at WoDiM 2008, and T-J King’s group in JVST paper)
significant issue for interpretation of trap level for
trap assisted tunneling and/or PF transport



