Simulating Hydrogen Transport and
Single-Event Transients

Mark E. Law
Dan Cummings, Nicole Rowsey
And a Host of Collaborators

&

" @ UNIVERSITY OF Gy o e
&FLORIDA e‘%'é%ﬁﬂj RCEE J/SDR




2 T - v’ . 2 . -4 , { Q
i "SEE"WWHE M‘.ﬂlﬂ( BRADFORD VS.TEBOW FOR THE HEISMAN
@ . SEE YOUIN'MIAMI'OKLAHOMAVSSELORIDA FOR THE BCS TITLE

« SOONERS OB SAM BRADFORD

K
| ° S

Florida OB
g Tim Tebow
- inspired his

_WR wi s N




Objectives and Outline

e Provide device simulation environment for rad-hard
applications (both SET and degradation)
e Address Rad-Hard specific issues

— Numeric - discretization, parallel
— Physics - strain, mobility

— Coupled Device / Defect \I//&
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FLOOPS / FLOODS / FLOORS

e Multi-dimensional, Object-oriented codes
e P =Process /D = Device 90% code shared
e Scripting capability for PDE’s - Alagator

e Commercialized - ISE / Synopsys
— Sentaurus - Process is based on FLOOPS

e Licensed at over 300 sites world-wide

* Fick’s Second Law of Diffusion
— ddt(Boron) - 9.0e-16 * grad(Boron)
— 0C(x,t) / ot = D 9>°C(x,t) / 9x?
e All physics 1s defined on the command line
e Rapidly evolve models for new devices / materials / physics
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e The website will include:

Eneineer

FLOOXS User Guide (Wiki)

e New FLOOPS/FLOODS user guide is under development

Device and process simulation

examples

Alagator scripting language and

command examples

Code development section

Address:

http://www flooxs.ece.ufl .edu
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4 Manual

navigation

= Main Page

= Community portal
= Current events

= Recent changes
= Random page

= Help
search

(Go]
toolbox

= What links here
= Related changes
= Upload file

= Special pages
= Printable version
= Permanent link

page discussion view source history

Device Examples

Contents [hide]

1 Resistor

2 P-N Diode

3 Bulk-Si MOSFET

4 FinFET

5BJT

6 Other Useful Resources

Resistor

The following resistors offer a good introduction to creating ar

= Resistor example (1D)
= Resistor example (2D)

P-N Diode

The following diodes build on the resistor examples where the

= PN diode example (1D)
= PN diode example (2D)
= PN diode example (3D)

Bulk-Si MOSFET

= NMOS example (2D)
= NMOS example (3D)

FinFET
= Double-gate FinFET example (2D)

BJT

= BJT example (2D)
= BJT example (3D)




Laser-Induced Current Transients in
Strained-S1 Diodes (NSRECO09)

* Single event transients (SETs) and single event upsets (SEUs) are
related to collection of radiation-generated charge at sensitive circuit
nodes

e Due to the widespread adoption of strained-Si technology, it is
important to understand how mechanical stress affects these transient
pulses.

e A pndiode is a good representation of the source/drain junctions that
are responsible for charge collection in MOSFET:s.

e Uniaxial strain engineering has the potential to control the shape of
single event transients and collected charges in devices.

Reverse biased Strained Mixed-mode
on diode = |CcMOS |=——> |CcMOS
(NSREC 09) (Fall 09) (2010)

** FLORIDA



Simulation Setup

* A reverse-biased n*p diode of dimensions 40 x 40 x 40 um was created

e Advanced mobility models (Masetti, Brooks-Herring) and recombination
models (SRH, Auger) were used

e The number and distribution of electron-hole pairs generated by the laser pulse
are calculated by a single photon absorption (SPA) equation.

 The SPA parameters are matched to the

. N, (2) = —exp(-az)I(r, 2)
values of the laser used for the experiment ha

e Uniaxial mechanical stress along the <110> direction was applied
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Simulation Results

e FLOODS simulation output shows the same trend as the experimental data

e The change in the collected charge under mechanical stress can be explained
by a change of electron mobility in the <001> direction (A MHJ‘)

 The FLOODS predicts that the amount of charge collected under 1 GPa of
tensile stress 1S 22% less than that collected in an unstressed device.
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Object Oriented

* Derived Specific Geometry Elements

N1 AT O
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e Common properties so code 1s independent

Node

Element Class

Edge

N\

Face

2 -Edge | | 3 -Edge
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Bricks work better!
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Comparison of Discretization Methods

e Commercial tools use finite volume Scharfetter-Gummel (n, p, ¥) current edge

* Experimental finite element quasi-Fermi levels (¢,, ¢,, %) current continuous

J, =qnu,E+gD Vn = —qun

 SG requires grid alignment for accurate answers - not possible in generic rad
strike

V.5G.0.05

0.0008 — o
IV FED.02

IV.FEO.1

0.0006 —

Vertical (microns)
o

0.0004 —

0.0002 —

Wiy

o - T T T T T T T T
Lateral (microns) 0 02 04 06 08

% FLORIDA SISPAD 09 Paper, Joint w/ Intel




Enoineerno

k-’

Mesh Element Types

e The quasi-Fermi method takes the Grad(Qf) over the element to
calculate current density, thus current flow in the QF method is not
defined on the edges is in the Scharfetter-Gummel method -> may be
better for particle strike transients

e The follow elements were tested using the different discretization

ey
e

methods:
Quad-Diagonal Randomized Quad
(FLOODS Default) Quad-Diagonal
Uneven Quad Tetrahedron Hexahedron (Brick)

A

A

¥ UNIVERSITY O
% FLORIDA

11



Results Summary

e For 3-D simulations, brick elements offer better solution converge than
tetrahedra elements (DC and transient)

e The quasi-Fermi method requires fewer Newton steps to converge for each
time step during 3-D charge collection transients. This results in a shorter total
simulation time.

e The improved stability of the FEQF method for 3-D charge collection
transients may be due to a better handling of isotropic current flow.

Average 3-D Transient Simulation Time

(normalized) FE QF might parallelize
100% better than FV SG
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20%
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Philips Mobility Model

The Philips mobility model is of an empirical form derived from the
Masetti?! model (egn. 20 in ref. [1]).

Ne sc Ni’e ) n+
Aue,D+A+j (NDﬂNAﬂnﬂ p)= Au’e,N( ’ ]( L ) + Aue,c( p ] [20]

Ne,sc,eﬁ’ Ne, Ne,sc,eﬂ

sc

Ne,sc,eﬁ’ =]\[D +G(})e)NA +p/F(})e)
Where:

The G and F terms are quantum-mechanic scattering parameters. F
varies from 1 to 5 and y, .and y, , are mobility constants.

When n=p >> N, or N,, as in the case of a radiation strike,
equation reduces to the following:

iue,D+A+j = ll’l’e’c F(P€)2 -> 500
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Proposed mobility model

The new model reduces mobility with increasing e-h carrier concentration. The
proposed mobility model is a modified version of the Klaassen / Masettil?!

model (lattice and ionized impurity scattering) and is coupled with a classical
electron-hole scattering model.

Doping dependent majority Doping dependent minority
Wax — Wi U, Mer 1min = Mmin T B _Mmoign - a a + £ a
= o+ X min__ _ Loy . 1 2 | 4
Hetst = Hom 4 (W, 1C F 1+ (G /N, Y () e[S e
R N] CT

Conwell-Weisskopf 34! e-h scattering
: B - : - :
Weighted average approach (Brooks-Herring also an option)
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T ’ /3
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General Comparison

e The Philips mobility model predicts an increase in mobility 1f
n,p >> Np,N, for doping levels more than ~1el18 cm™?

 The below graphs show how the different models treat electron
mobility for a vary 1n% N concentration and increasing n=p carrier
levels. N, =lel4 cm™ 1s held constant.
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To compare how the models collect charge, a simple 2D reverse-

Charge collection simulation

biased diode was simulated in FLOODS. As expected, the higher
mobility predicted by the Philips model results in a larger amount
of charge collected.
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Strained CMOS Devices

* Following the conclusion of the strained diode work, strained
CMOS devices will be looked at in greater detail

e 3-D Strained CMOS devices are now working in FLOODS

e Examining possibility of a mixed-mode SRAM cell
simulation (stressed vs. unstressed)

* Mixed-mode option will require
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Strained Double-Gate FInFET

e In addition to 3-D strained CMOS, 3-D Strained
double-gate FInFET's are now working in FLOODS
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Hydrogen Trapping Simulation

e Simulate in Quasi-Steady State
— Hydrogen Soak Anneals
e Simulate Hole / Hydrogen /
Vacancy Interactions in Oxides
— Simple first order reactions
— Diffusion + Field Transport
— Issues with the Chen model

e Build Equations for Proposed
Reactions (Tuttle)

—V + ht->V*
—H, + V*->VH + H*
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e Implemented Equations
e TNS Paper Last Year

e Refine the model
e Developed _I ”T"w:' ————

— Reaction Add Routine

B Equation Buﬂder Picture from Ball et al., IEEE TNS, 49(2002) p.3185
e Working on right Eqn’s
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e Collaborate w/ Vandy
— Hughart’s Experiments
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Summary

Continuing Work:

* (Quasi-Fermi method testing, need to understand transient
simulation time savings

— QF method coupled with parallelized code may offer good simulation time
benefit

* Non-linear piezoresistive stress model (Hyunwoo Park)
— Biaxial stress modeling
— Optimum stress type to minimize SET

Future Work:
e Parallelization of Code using PETSc

e Mixed-Mode Simulation
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