

Single-Event Transients in Strained-Si Devices

Mark E. Law, Scott Thompson Dan Cummings, Nicole Rowsey, Hyunwoo Park David Hughart, Sasha Batyrev, Ron Schrimpf

- Provide device simulation environment for rad-hard applications
- Address Rad-Hard specific issues
 - Physics strain

JNIVERSITY OF

- Numerics automatic operation
- Coupled Device / Defect

Outline

- Background FLOODS Code
- Numeric Issues and Enhancements
- Physical Issues and Enhancements
- Conclusions

FLOOPS / FLOODS

- Multi-dimensional, Object-oriented codes
- P = Process / D = Device 90% code shared
- Scripting capability for PDE's Alagator
- Commercialized ISE / Synopsis
 Sentaurus Process is based on FLOOPS
- Licensed at over 300 sites world-wide

What is Alagator?

Operator	Description	
"ddt"	Time derivative	
"grad"	Spatial derivative	
"sgrad"	Scharfetter / Gummel Discretization Operator	
"dot"	Returns the dot product of the gradient of two scalar arguments	
"elastic"	Compute elastic forces - FEM balance	
"EffMass"	Computes the effective mass change as a function of strain and current direction	

- Example use of operators for diffusion equation
- Fick's Second Law of Diffusion
 - ddt(Boron) 9.0e-16 * grad(Boron)
 - $\partial C(x,t) / \partial t = D \partial^2 C(x,t) / \partial x^2$
- All physics is defined on the command line
- Rapidly evolve models for new devices / materials / physics

Outline

- Background FLOODS Code
- Numeric Issues and Enhancements
- Physical Issues and Enhancements
- Conclusions

Object Oriented

т

0

R

- Derived Specific Geometry Elements
- Common properties so code is independent

Anisotropic Grid - Mixed Elements

Oxide.Grid

For many reasons, Silicon.Grid quads are better shapes for device simulation

- Rectangular region \bullet created at the command line
- **Refinement creates** • mixed elements and terminated lines
- Assembly runs on • generalized elements

Parallel Element based Assembly

- Working toward a fully element based assembly
 - Current split operators among grid pieces
 - Each assembled separately
 - Lots of matrix loads parallel conflict
- Fewer parallel conflicts with Matrix Load
 - Assemble all element pieces together
 - Single load per element to Matrix
- Fewer Matrix Load Operations
 - Might be beneficial on scalar processors
- Compatible with public domain grid partitioning
 - Partition grid regions and data along slices

Elastic Assembly - Element Assembly

- Data Comes from ElementInfo Class
- All are vectors 128 long
- Code Fragment of Assembly

```
for(i = 0; i < BDim; i++) {
    for(j = 0; j < BDim; j++) {
        sij = 0.0;
        for(l = 0; l < Ddim; l++) {
            for(k = 0; k < Ddim; k++) {
                //multiply B<sup>T</sup>, D, B
                sij.MultSum(ev.BM(k,i),ev.BM(l,j), dval[D[k][1]]);
            }
        sij *= ev.Size();
    }
}
D Matrix Spatially Varying [6x6] = [6x3] \cdot [3x3] \cdot [3x6]
```

 $k^e = B^T \cdot D \cdot B \cdot \Lambda$

Outline

- Background FLOODS Code
- Numeric Issues and Enhancements
- Physical Issues and Enhancements
- Conclusions

Complex Mobility Model Available

Surface scattering terms (Vertical Field) Velocity Saturation EffMass changes w/ strain (more later)

UNIVERSITY OF

Unifies the description of majority and minority carrier bulk mobilities

- temperature dependence
- electron-hole scattering
- screening of ionized impurities by carriers
- clustering of impurities

Piezoresistance

• Piezoresistivity is the change in electrical resistivity with mechanical stress and involves the relationships between electric field E_i , current density J_i , and mechanical stress σ_{kl}

$$\mathbf{E}_{i} = \left(\boldsymbol{\rho}_{ij} + \boldsymbol{\Pi}_{ijkl} \boldsymbol{\sigma}_{kl} \right) \mathbf{J}_{j}$$

(Small Change Limit)

$$J_{n,p} = -qn\mu_{n,p} \nabla \phi_{n,p} \begin{bmatrix} J_{\chi}(\sigma) \\ J_{\chi}(\sigma) \\ J_{\chi}(\sigma) \end{bmatrix} = \begin{bmatrix} J_{\chi}(\sigma) \\ J_{\chi}(\sigma) \\ J_{\chi}(\sigma) \end{bmatrix} = \begin{bmatrix} 1 - \Delta \mu_{xx} / \mu_{xx} & -\Delta \mu_{yy} / \mu_{yy} \\ -\Delta \mu_{zx} / \mu_{zx} & -\Delta \mu_{yz} / \mu_{zy} \\ -\Delta \mu_{zy} / \mu_{yy} & -\Delta \mu_{zz} / \mu_{zz} \end{bmatrix} \begin{bmatrix} J_{\chi}(0) \\ J_{\chi}(0) \\ J_{\chi}(0) \end{bmatrix}$$

Piezoresistance example

- Silicon beam with an n-type surface
- Bending induces tensile stress at the surface resulting in a increase in mobility and current.

Piezoresistance

• The gradient of the quasi-fermi level gives $J_{n,p}$ vector values for each element

 Piezoresistance coefficient matrix can be defined for any orientation using directional cosines

$$\pi_{ijkl}' = \sum_{m} \sum_{n} \sum_{o} \sum_{p} a_{mi} a_{nj} a_{ok} a_{pl} \pi_{mnop}$$

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} cos\phi cos\theta & -sin\phi & cos\phi sin\theta \\ sin\phi cos\theta & cos\phi & sin\phi sin\theta \\ -sin\theta & 0 & cos\theta \end{bmatrix}$

Piezoresistance

- Piezoresistance coefficients can be set to spatially vary in FLOODS
 - Extracted channel and bulk coefficients different (to do)
- Piezoresistance coefficients are function of impurity concentration and temperature P(N,T)

INIVERSITY OF

Strained PMOS

- To enhance channel mobility, PMOS strain processing includes embedded SiGe in the source/drain regions and compressive capping layers.
- FLOOXS predicts strain/stress profiles where the channel stress is ~1 GPa

Horstmann, *et al.* IEDM 2005

FLOOXS predicted stress profile [dyne/cm2] (YY component - channel direction)

Strained PMOS Simulations

- PMOS with $L_{gate}=30 \text{ nm}$
- <110> channel orientation
- 2007 ITRS dimensions
- Charge strike dist. in drain

PMOS Current Transient (V_{gs}=-1.0 V, V_{ds}=-1.0 V)

PMOS Current Transient (V_{gs}=0 V, V_{ds}=-1.0 V)

Double-Gate FinFET

- $L_{gate}=18 \text{ nm}, w_{si}=11 \text{ nm}$
- Midgap metal gate (typically TiN)
- Gate-S/D doping underlap to control V_t and short channel effects

Double-Gate FinFET

• nFinFET current transients

nFinFET Current Transient

Apply piezoresistance model to 3-D strained FinFET

TABLE I LONGITUDINAL PIEZORSISTANCE COEFFICIENTS FOR n- AND p-FINFETS ALONG WITH PREVIOUS PUBLISHED DATA FOR PLANAR MOSFETS AND BULK SI (110)

Device Type	Longitudinal Piezoresistance Coefficients (110)/<110> Units (x10 ⁻¹¹ Pa ⁻¹)	
	N-type	P-type
FinFET (This Work)	51.4	-37
Planar MOSFET	40 ^[13]	-27.3 ^[14]
Bulk Si (110)	31.2 ^[15, 16]	-71.8 ^[15, 16]

Suthram S., et al. EDL 2008

Summary

- Work Toward Parallel Efficiency
 - Need to work on bricks, unrefinement
 - Element Based Assembly
- Added Physical Operators
 - Added Strain 3D, parameterizable
 - Calibrate Effect from Device Measurements
- Begun Simulation of Advanced DG Structures