Mechanisms of Hydrogen Effects in Bipolar Radiation Response

I. G. Batyrev¹, D. R. Hughart², B. Tuttle¹, M. Bounasser², R. D. Schrimpf², M. Law³, D. M. Fleetwood^{2,1} and S. T. Pantelides¹

¹Department of Physics and Astronomy

²Electrical Engineering and Computer Science Department

Vanderbilt University, Nashville, TN

³Department of Electrical and Computer Eng., University of Florida Supported by AFOSR and US Navy

Motivation

- Hydrogen has strong effect on radiation response and long term aging
- Identify the fundamental physical mechanisms

Hydrogen effects on radiation response of field oxides

- Packaging with hydrogen negatively impacts radiation response
 - R.L. Pease, et. al. 2007
- Enhanced degradation of bipolar transistors exposed to hydrogen
 - X.J. Chen, et. al. 2007

- What physical mechanisms are responsible for these effects?
 - Answered through experiments, first-principles calculations, and simulation

- Experimental results on H₂ diffusion from NAVSEA Crane
 - Strong effect of H₂ exposure on BJT rad response
- Modeling
 - Hydrogen molecule diffusion, FLOODS
 - First principles calculations
 - Interactions of H₂ with defects
 - Generation of protons
 - Interaction of H⁺ with defects/trapping of the charge

Hydrogen exposure experiments at NAVSEA Crane

- Experimental conditions
 - 100% H₂ atmosphere for various times at room temperature
 - 10 krad(SiO₂) at 40 rad(SiO₂)/s
- Results
 - Increased degradation correlated with increased pre-irradiation soaking time in hydrogen

Interface trap density in thin and thick oxides

- Interface trap density extracted from gated lateral pnp transistors
 - Used method developed by Ball, Schrimpf, and Barnaby (2002)

- Experimental results on H₂ diffusion from NAVSEA Crane
 - Strong effect of H₂ exposure on BJT rad response
- Modeling
 - Hydrogen molecule diffusion, FLOODS
 - First principles calculations
 - Interactions of H₂ with defects
 - Generation of protons
 - Interaction of H⁺ with defects/trapping of the charge

H₂ concentration in base oxide

Rapid increase of hydrogen in gate region of bipolar device due to H₂ soak (simulated using FLOODS)

Similar to radiation response

- Experimental results on H₂ diffusion from NAVSEA Crane
 - Strong effect of H₂ exposure on BJT rad response
- Modeling
 - Hydrogen molecule diffusion, FLOODS
 - First principles calculations
 - Interactions of H₂ with defects
 - Generation of protons
 - Interaction of H⁺ with defects/trapping of the charge

H₂ cracking at neutral O vacancy

$$H_2 + V_o \rightarrow \equiv Si-H + \equiv Si-H$$

Exothermic, energy gain 0.4-1.4 eV, activation energy 0.9-1.0 eV

H₂ cracking at different O vacancy sites

Structure	site 1	site 2	site 3	site 4	site 5	site 6
Energy gain (eV)	0.4	1.3	0.6	1.4	-0.14	0.5
Si-Si distance after cracking (Å)	3.43	3.72	3.58	3.69	3.23	3.59
Activation energy (eV)	0.9	1.0	1.0	-	-	-

- Experimental results on H₂ diffusion from NAVSEA Crane
 - Strong effect of H₂ exposure on BJT rad response
- Modeling
 - Hydrogen molecule diffusion, FLOODS
 - First principles calculations
 - Interactions of H₂ with defects
 - Generation of protons
 - Interaction of H⁺ with defects/trapping of the charge

Proton release

h + 2 (
$$\equiv$$
Si-H) \rightarrow H_B + H⁺

Exothermic, energy gain 01.-0.3 eV, activation energy 0.7 eV

Migration energy of H⁺ 0.6-0.8 eV

- Experimental results on H₂ diffusion from NAVSEA Crane
 - Strong effect of H₂ exposure on BJT rad response
- Modeling
 - Hydrogen molecule diffusion, FLOODS
 - First principles calculations
 - Interactions of H₂ with defects
 - Generation of protons
 - Interaction of H⁺ with defects/trapping of the charge

Charge trapping

 $H^+ + V_o \rightarrow H^+_B$ (deep hole trap)

Exothermic, energy gain~0.9 eV activation energy 0.7-0.9 eV

Charge trapping

In the bulk: $H^+ + V_o \rightarrow H^+_B$

$$\frac{\partial N_{ot}}{\partial t} = \sigma_{V_o} \mu_{H^+} E \times [H^+] [V_o] - N_{ot} / \tau_{N_{ot}}$$

$\Delta N_{\rm ot}$ cm⁻³

Gate sweep,0.22 μ m, 10 krad(SiO₂), 40 rad(SiO₂)/s

Can oxygen vacancy in bridge position at interface contribute to N_{it}?

H⁺ + V_o → H⁺_B activation energy 0.7 eV, gain of energy 1 eV

Charge trapping at interface

Standard model of N_{it} formation

 $H^+ + Si-H \rightarrow D^+ + H_2$, activation energy ~1 eV, endothermic, loss of energy 0.3 eV

Charge trapping

At interface: $H^+ + V_o \rightarrow H^+_B$ activation energy 0.7 eV, gain of energy 1 eV

$$\frac{\partial N_{it}}{\partial t} = \sigma_{V_0} \upsilon_{th,H^+} \times [H^+][N_{V_o}] - N_{it} / \tau_{N_{it}}$$

ΔN_{it} cm⁻³

Soak time, hours

Gate sweep,0.22 μ m, 10 krad(SiO₂), 40 rad(SiO₂)/s

Conclusions

- Exposure to H₂ dramatically affects radiation response
- H₂ cracking reaction identified
- Proton generation mechanism proposed
- Proton trapping in the bulk and at the interface

