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Motivation

• Hydrogen has strong effect on radiation
response and long term aging

• Identify the fundamental physical
mechanisms



Hydrogen effects on radiation response
of field oxides

• Packaging with hydrogen negatively impacts radiation response
– R.L. Pease, et. al. 2007

• Enhanced degradation of bipolar transistors exposed to
hydrogen
– X.J. Chen, et. al. 2007

• What physical mechanisms are responsible for these effects?
– Answered through experiments, first-principles calculations, and

simulation



Outline

• Experimental results on H2 diffusion from
NAVSEA Crane
– Strong effect of H2 exposure on BJT rad response

• Modeling
– Hydrogen molecule diffusion, FLOODS

–  First principles calculations
– Interactions of H2 with defects

– Generation of protons

– Interaction of H+ with defects/trapping of the charge



Hydrogen exposure experiments
 at NAVSEA Crane

• Experimental conditions
– 100% H2 atmosphere for various times at room temperature
– 10 krad(SiO2) at 40 rad(SiO2)/s

• Results
– Increased degradation correlated with increased pre-irradiation

soaking time in hydrogen



Interface trap density in thin and thick oxides

0.22 µm

1.03 µm

Soak time, hours

• Interface trap density extracted from gated lateral pnp transistors
– Used method developed by Ball, Schrimpf, and Barnaby (2002)

 10 krad(SiO2)
  40 rad(SiO2)/s
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Rapid increase of
hydrogen in gate region
of bipolar device due to
H2 soak (simulated using
FLOODS)

H2 concentration in base oxide
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Similar to radiation response
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H2 cracking at neutral O vacancy

Exothermic, energy gain 0.4-1.4 eV, activation energy 0.9-1.0 eV

H2 + Vo → ≡Si-H + ≡Si-H



H2 cracking at different O vacancy sites
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h   +  2 (≡Si-H)   →  HB   +   H+

Proton release

Exothermic, energy gain 01.-0.3 eV, activation energy 0.7 eV

Migration energy of H+ 0.6-0.8 eV

+h

HB H+
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Charge trapping

H+ + Vo → H+
B (deep hole trap)

Exothermic, energy gain~0.9 eV

activation energy 0.7-0.9 eV

H+BH+



Charge trapping
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In the bulk: H+ + Vo → H+
B

Soak time, hours

∆Not cm-3

Gate sweep,0.22 µm,
 10 krad(SiO2),
 40 rad(SiO2)/s

oto
NotoHV

ot
NVHE

t

N
!µ" /]][[ #$=

%

% +
+



Can oxygen vacancy in bridge position at interface
contribute to Nit?

H+ + Vo → H+
B   activation energy 0.7 eV, gain of energy 1 eV

H+
B
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Standard model of Nit formation

Charge trapping at interface

H+ + Si-H → D+ + H2 , activation energy ~1 eV,

endothermic, loss of energy 0.3 eV

Soak time, hours

∆Nit cm-3



Charge trapping

Soak time, hours

ΔNit cm-3

At  interface: H+ + Vo → H+
B   activation energy 0.7 eV, gain of energy 1 eV
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Gate sweep,0.22 µm,
 10 krad(SiO2),
 40 rad(SiO2)/s



Conclusions

• Exposure to H2 dramatically affects
radiation response

• H2 cracking reaction  identified
• Proton generation mechanism

proposed
• Proton trapping in the bulk and at the

interface


