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High resolution experimental studies of high-k on Ge, III-V and 
other substrates:

• Composition and depth profiling – XPS, MEIS, RBS, SPM…
• Electronic structure – PES, IPE, optical and electrical methods
• Surface/interface passivation chemistry and relation to defects

Summary of work over grant period:
• Interface passivation and oxide reduction on during high-K deposition
• Surface/film analysis of  gate stacks exposed to high-energy radiation
• Studies of Fermi level pinning and unpinning at oxide-semicond. interfaces
• Metal gate – high-K stack interface chemistry and band alignment  

Motivation:  Help develop a fundamental 
understanding and control of radiation 

induced defects in future CMOS materials.
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CMOS gate stack activities @ Rutgers
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Tools:
• Ion scattering - MEIS, RBS
• Electronic structure – XPS, UPS, Inverse PES, Internal PES
• Electrical – CV, IV (plus work with Sematech)
• Microscopy – TEM/STEM/EELS, SEM, STM, AFM….

Issues:
• Post-Si Substrates: Ge, GaAs, InGaAs
• Etching and passivation chemistry on alternative substrates
• Radiation induced defects (esp. in dielectric and at interfaces)
• Film initiation and growth (esp. for ALD growth)
• Influence of interface layers (work function engineering)
• Metal gate/high-κ dielectric film and interface stability
• Diffusion/atomic mobility (O, Si, N, metal, etc…)
• Epitaxial oxides and higher-K - e.g. STO/Si, La compounds



Integrated MEIS/ALD system

Atomic Layer Deposition (ALD) 

Medium Energy Ion Scattering (MEIS) 

Plus NRP, LEED, PLD, FTIR….X-ray Photoemission (XPS) 
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Medium Energy Ion Scattering (MEIS)

• Low energy, high resolution RBS

• Quantitative composition and 
structure  down to ~200 Å

• High depth resolution: 
~ 3 Å near surface

• Absolute elemental areal density
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Purpose of this past year’s work
• Explore processing and passivation chemistries for Ge devices 

(analogous to prior work on III-V substrates)
– Control of interfacial oxide to minimize electrical defects between gate insulators 

and channel materials, and to maximize capacitance.
– growth of an ideal dielectric layer 

• What processing produces optimal films/interfaces?  
• Solution (wet): etches, solution oxide growth
• Can we use gas-vacuum (dry) methods to clean and passivate: 

desorption anneals, ALD growth/cleaning, UV
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Solution-based Ge cleaning and oxidation 
Some chemistries explored:
• De-ionized water; HF; DIW/H2O2
• HF/DIW/H2O2
• NH4OH/H2O2
• HCl/H2O2 
• H2SO4

Sulfur-passivation in hot (NH4)2S on H2SO4/H2O2-treated Ge

• (NH4)2S etches oxide
• Thin GeOxSy layer remains
• H2SO4/H2O2 and (NH4)2S treatment results in low C
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Thermal desorption of the native oxide 
of Ge in high vacuum (≤10-7 torr)
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• 450 °C: 
substantial desorption of O 
• 475 °C:
no detectable oxygen
• Decrease of Ge peak:
re-crystallization and/or loss 
of Ge

Drastic thermal desorption of 
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XPS of Ge oxide reduction during anneal
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• Heat Ge in vacuum (or air) – oxide 
desorbs at much lower T than on Si.



Reduction of Ge oxides by TMA exposure at 400C
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• Al and Ge layers react and mix GeAlO and GeAl? layer
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XPS of Ge oxide reduction during ALD growth

Ge oxide reduction 
by TMA pulse! 

 preheating at 400 oC
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 1 TMA pulse exposure
 Envelope of fit 

         for preheating at 450 oC

Ge

GeO2

• 1 TMA 
pulse
almost no 
GeOx

• Heat to 
400°C: 
GeO2 + ?
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HfO2 40A, hysteresis is ~0.15V.
Ge surface was first H2SO4/H2O2 treated.
No HF used before sulfidation in (NH4)2S.

77A HfO2, hysteresis is ~0.5V.
10% HF etching for 10mins before 
sulfidation in (NH4)2S.
APL 89, 112905 (2006)

Cleaning HF HF/DIW/H2O2 H2SO4/H2O2 HF H2SO4/H2O2

S-passivation No Yes Yes Yes
Qi/e (cm-2) 4.00x1013 4.17x1012 3.56x1012 3.19x1012

∆VFB_HS(V) 0.31 0.29 0.22 0.15
Dit (eV-1 cm-2) 3.80x1012 1.66x1011 8.91x1010 6.23x1010
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Ge surface chemistry and electrical defects
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Post-silicon CMOS take home messages:
• Radiation induced electrical defects (at low conc.) observable by 

C-AFM, but not most other surface methods.
• Although high-K films are defective, they appear not more 

sensitive to radiation degradation then SiO2-based CMOS.
• High-K dielectrics and metal gates are in product….on Si! 
• Very good devices can and have been grown on Ge and III-Vs.  
• Electrical properties a strong function of surface passivation.
• Favorable band alignment found for some passivation and film 

growth conditions.  Fermi level pinning (of interface defects?) 
can be controlled if film grown properly.

• Oxides of Ge and III-V’s less stable thermally and electrically 
relative to SiO2; can be consumed during high-K growth.

• Metallization materials and processes strongly affect interface 
chemistry and electrical properties.
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• Sylvie Rangan, Eric Bersch, Robert Allen Bartynski, Eric Garfunkel and Elio 
Vescovo; Band offsets of a ruthenium gate on ultrathin high-κ oxide films on silicon, 
Physical Review B 79, 075106 (2009).

• Hang Dong Lee, Tian Feng, Lei Yu, Daniel Mastrogiovanni, Alan Wan, Torgny 
Gustafsson, and Eric Garfunkel; Reduction of native oxides on GaAs during atomic 
layer growth of Al 2O3, Applied Physics Letters 94, 222108 (2009).

• M. Dalponte, M.C. Adam, H.I. Boudinov, L.V. Goncharova, T. Feng, E. Garfunkel 
and T. Gustafsson; Effect of excess vacancy concentration on As and Sb doping in 
Si, J. Phys. D: Appl. Phys. 42 (2009) 165106.

• S. Rangan, et al; Aluminum gate interaction with ultrathin high-k oxide films on Si, 
submitted.

• C.L. Hsueh, et al; Effect of surface oxidation and sulfur-passivation on Ge based 
MOS capacitors, submitted.

• E. Garfunkel, J. Gavartin and G. Bersuker, Defects in CMOS Gate Dielectrics, 
Defects in Microelectronic Materials and Devices: Edited by D. Fleetwood, S. 
Pantelides, and R.D. Schrimpf, CRC Press 2008 Chapter 11, pp 341-358.

These and other papers can be downloaded at:  http://garf.rutgers.edu
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Future directions
• Focus further on planar Ge, SiGe, III-V, GaN, SiC… substrates

– Correlate defect generation rate with Egap and e-h pair generation 
probability of semiconductor and metal layers adjoining dielectric

– Correlate physical and electrical measurements of “intrinsic” and 
“radiation induced/enhanced” defects

– Explore Ef pinning and relation to radiation induced defects
– Monitor H/D concentration/profiles in post-silicon materials

• Si, Ge and III-V nanowire devices
• Radiation-induced defects in organic electronics, novel memory, 

graphene-based devices, MEMS

Our value to community: ultrathin film growth (ALD, etc), atomic 
scale resolution (ion scattering, spectroscopy), materials chemistry
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Nion–Rutgers (Krivanek-Batson) Collaboration: 
High Resolution EELS in an aberration-corrected STEM

• ~10 meV target EELS energy resolution 
• 20-50 pA into a 1-1.5 Å probe @50 kV
• ~0.5 Å probe @10pA, 100kV (lower energy res.)

Atomic resolution spectroscopy:
Er-doped buckyball filled nanotube

Er C

Optical Dielectric Forces: 
Au Coalescence  

P.E. Batson

Nion aberration-corrected 
TEM column

HfO2-coated Ge nanowire
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Additional slides
Including some work from past years
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Alternative Channel Materials
• Mobility improves by straining Si, but CMOS scaling would 

benefit from yet higher mobility….try other semiconductors.
• A key challenge for alternative channel materials is passivation 

– need low interface and bulk defect concentration.
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• Sensitivity:
≈ 10+12 atoms/cm2 (Hf, Zr)
≈ 10+14 atoms/cm2 (C, N)

• Accuracy for determining total amounts:
≈ 5% absolute (Hf, Zr, O), ≈ 2% relative
≈ 10% absolute (C, N)

• Depth resolution: (need density)
≈ 3 Å near surface
≈ 8 Å at depth of 40 Å 
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Electronic structure across multilayer stacks

• Band edge energies determined in many ways – elec. and optical spec.
• Can we use spectroscopies to (i) measure energies and LDOS more 

precisely, (ii) determine interface dipoles and band alignment, and (iii) use 
interface engineering to control effective work function…
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Single chamber 

UHV measurments

Si

SiO2

HfO2

Substrate band edges determination

Band offsets

Gap determination

5.7
15 Å

O2p

Hf5d

Photoemission and inverse photoemission of  HfO2/SiO2/Si
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Band alignment determination by 
photoemission and inverse photoemission

Band offsets of ultrathin high-k oxide films with Si, Bersch et al., Phys. 
Rev. B 78 (2008) 085114 

Direct experimental 
determination of crucial 

parameters:

Gap, VBO, CBO and χ
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Fundamental understanding of band 
alignment (conduction band)

Ru Al Ti

Oxide Expt MIGS Expt MIGS Expt MIGS

HfO2 2.4 2.5 1.5 1.9 1.8 1.9

Hf0.7Si0.3O2 2.4 2.4 1.5 1.8 1.7 1.8

SiO2 3.8 3.9 3.4 3.0 3.1 3.0

Al2O3 3.0 2.7 2.0 2.0 2.4 2.0

Agreement between 
experimental CBO and 
MIGS-predicted CBO 
when no metal-induced 

interface oxide is present.

Band offsets of a ruthenium gate on ultrathin high-k oxide 
films on Si, Rangan et al., Phys. Rev. B 79 (2009) 075106 

Aluminum gate interaction with ultrathin high-k oxide films 
on Si, Rangan et al., submitted APL

Band offsets of a Ti gate with ultrathin high-k oxide films on 
Si, Rangan et al., manuscript in preparation
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S- passivated n-GaAs

0.35-0.4 eV

3.9 eV

S- passivated p-GaAs

2.5 eV
0.35-0.4 eV

~2.3-2.4 eV

~2.3-2.4 eV

HfO2

HfO2

S- passivated n-GaAs

S- passivated p-GaAs

1.4 eV

1.4 eV

1.9 eV

1.4 eV

1.4 eV

Ec

Ev

Ev

Ec

EF

EF

Ec

Ec

EF

EFEv

Ev

• On S-passivated III-V films Ef is partially pinned.
• After HfO2 growth, much less pinning.
• Conduction and valance band offsets agree with literature.
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4.5 nm thick III-V MOSCAPs (effect of 500 oC PDA)

ALD growth at 320 oC; Device area: 2.5×104 µm2.

20

40

60

80

100

120

-4 -2 0 2
Voltage (V)

C
ap

ac
ita

nc
e 

(p
F)

1 MHz
100 KHz

10 KHz

With 500 oC PDA

0

20

40

60

80

100

120

140

160

180

200

-4 -2 0 2
Voltage (V)

C
 (p

F)

1 MHz
100 KHz
10 KHz

With out PDA

For thin oxide, PDA significantly improves freq. dispersion, assuming that 
the MOSCAP CV behavior is dominated by the interface quality 
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 Initial HfO2 film has small amount of 
interfacial SiO2 (~6-7Å) and excess of 
oxygen (~HfO2.07)

 Deposited Ti forms uniform layer, no strong 
intermixing with HfO2; 

 Oxygen concentration in Ti layer is small

After UHV anneal at 300oC for 15 min:
 Lowering and broadening of Ti peak
 Hf and Si peak shift and O peak changes
⇒ Ti layer partially oxidized
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Gate metal effects on chemical stability of dielectrics
Metal as source or sink for oxygen and hydrogen
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• “Self-cleaning” during ALD growth is a phrase that described the 
concomitant reduction and removal of surface oxides from a substrate during 
the ALD process. It has been observed by several groups (P.D. Ye et. al.,APL, 
83, 180; M. Frank  et. al., APL, 86, 152904; C. Hinkle  et. al., APL, 92, 071901).

• Some issues regarding “self-cleaning”:
1. When does it occur? At the very first introduction of precursor or 

continuously through the growth?
2. Where do the surface chemical species go? Desorb or incorporate into the 

dielectric or substrate?
3. Can it help us prepare optimal gate stacks?
4. No detailed structural data reported regarding “self-cleaning”.

Interface reduction (self-cleaning) during 
growth and processing

C.H. Chang et. al. 
(APL, 89, 242911)
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Native oxide reduction after 1 TMA pulse
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• The O content in the Al oxide layer is 3.5 
(×1015at./cm2), similar to the O decrease in the 
native oxide layer, 3.0 (= 4.6-1.6)  O atoms from 
the native oxide layer form the Al oxide (the only
oxygen source). 

• The (Ga+As) density in the native oxide layer is 
reduced from (2.0+0.9) to (1.6+0.24)  desorption 
of Ga and As.  

In situ MEIS

Vanderbilt MURI 2010



32

Photoemission (XPS) during growth
• After preheating: Conversion of As2O3 (46% 

decrease) to Ga2O3 (47% increase) (relative to 
as-received wafer).

• The native oxides in the preheated samples 
consist of a mixture of As2O3, As2O5 and 
Ga2O3. The Ga:As ratio (~2:1) is close to the 
one from MEIS (2.3:1).

• After 1 TMA pulse: Decrease of the As-O 
(~75%) and Ga-O (~16%) peak areas, 
consistent with MEIS.

• After 4 TMA pulses: Further decrease of As-O 
below the XPS detection level (to a lesser 
extent also Ga-O) - confirms the MEIS result.  

Vanderbilt MURI 2010



33

AFM images of HfO2/SiON/Si
Before (a) and after (b) radiation exposure ~1015 ~ 200keV 

He2+

(a) (b)
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AFM images of Al-HfO2-InGaAs stack before (a) 
and after (b) 100 keV H+ (~1015 ion/cm2) 

Intel/Stanford

(a) (b)
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Conductive Tip AFM Image and I-V 
Behavior of a Ru/HfO2/Si Stack
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