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Materials issues and electrical behavior

• Defects at high-κ/semiconductor 
interfaces, in interface layers, or 
in films

• Interfacial oxide formation at high-
κ/metal gate interface

• Thermal stability and 
interdiffusion

Semiconductor

Source Drain>10nm

Metal electrode

High-κ dielectric
Interfacial oxide

⇒ Ge, InxGa1-xAs

Gate

H. Kim, et al., JAP 96 (2004) 3467

⇒ Metal, nitride, 
alloy or ?

IBM
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Outline
1. Experimental Methods 

compositional depth profiling – MEIS, XPS, RBS…
electronic structure – PES, IPE, optical and electrical 
methods…

2. High-k on Si, Ge and III-V substrates (new 
materials, defects and radiation damage)

HfO2 on InGaAs (passivation issues)
Metal gate effects and interface interactions

Use high resolution characterization methods to: 

Determine composition, structure and electronic 
properties of gate stacks that use new (post-Si) 
materials 
Help determine physical and chemical nature of pre-
existing and radiation induced defects
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Defects – understand and control 
critical for high-K integration

• What defects are in as-grown high-K stacks?
– vacancies - O, Hf or Si 
– impurities - H, Si, Ti, Zr, Hf, N, C, Cl, F etc. 
– interstitials - O, Hf and Si 
– Thermo/kinetic (stable/metastable); 

• When formed during processing?
– During high-K dep, stressing, metallization and/or post-growth 

anneals

• How best to minimize?
– During or following anneals 

• Does high-E radiation create defects or just permit 
the population of preexisting ones?
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Medium energy ion scattering:
high resolution, low energy 
variant of RBS.
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MEIS is a quantitative
technique with sub-nm
depth resolution, 
sensitive to sub-
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w/Gustafsson
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Oxides of InGaAs: surface characterization

• Top layer contains thin oxide 
• O areal density = 2.3×1015atoms/cm2

• Separation of Ga and As peak is poor 

InGaAs(001)

~5Å (In0.36Ga1.64O3)0.6 : (As2O3)0.4
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S passivation procedures:
1.(a) HF etch; (b) (NH4)2S (40%; 80oC, 15min)
2.(a) no HF ; (b) (NH4)2S (10%; 80oC, 15min)

Thin native oxide layer on InGaAs before S pass.

After passivation: oxygen is removed; S peak appears; 
change in surface In0.5Ga0.5As composition

In/(Ga + As) before passivation= 0.85

In/(Ga + As) after  passivation  = 1.17

Roughness issue!!!
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HfO2 deposition on S-passivated InGaAs(001)
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Depth profiling of Al/HfO2/S-passivated InGaAs(001)
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Diffusion and reaction processes in the films
Oxygen diffusion

HfO2

5Å InGaOx

InGaAs(001)

O2-

Al

Sulfur diffusion

• No interfacial layer 
• Oxygen gettering was observed 
for Ti or Al/HfO2/Si(001)

• After Al deposition S distribution is within 
the HfO2 layer, not at HfO2/InGaAs 
interface

HfO2

5Å InGaOx

InGaAs(001)

S2-

Al

ΔGf
300K, kJ/mol M2O3 M2S3 ΔGf

300K, kJ/mol M2O3 M2S3

In -830.04
-997.77
-576.16

-1087.9Hf (HfO2)-341.17
-505.61 Al

-166.16 * Data not available

-1581.7
*

Ga -713.24
As

Comparison of free energy of formation from I.Barin, Thermochem. data of pure substances, 1995
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Al/HfO2/InGaAs: TEM and electrical

5 nm

Al

HfO2

InGaAs

GaAs

• Thickness of Al/HfO2 interface is ~12 Å.
• From CV data the interfacial oxide has k < 9
• Thicker HfO2 films are crystalline

N. Goel, et al,  Appl. Phys. Lett. 89 (2006) 163517

Sulfur passivation of InGaAs 
improves the frequency 
dispersion in room temperature 
C-V measurements
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Post HfO2 dielectrics:   LaAlO3 / InGaAs
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• Possible interdiffusion on LaAlO3/InGaAs 
interface

• Relatively large C peak ⇒ surface La 
carbonates..?

• Some interface reactions at ~500C
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Alternative channel - partial summary:
• High-K films on Ge and III-Vs compositionally layered.
• Oxides of Ge and GaAs less stable than SiO2, hence potentially easy 

to remove thermally or chemically.
• Sulfur passivation helps in some systems. Roughness from etching an 

issue.
• Sulfur movement during high-K deposition and metallization, but 

some still in film.
• Si monolayers at interface appear helpful in minimizing defects.
• Metallization materials and processes effect film/interface – oxygen 

depletion.
• Possible inter-mixing of Hf at the interface during post deposition 

anneal (Hf in InGaAs - Ef pinning?)
• Nitride layers still help control interdiffusion.
• ALD growth initiation issues (again).
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Electronic structure, band alignment and defects
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• Band edge energies 
determined in many ways: 
mainly electrical and optical 
spectroscopy

Can we use spectroscopies to: 
• measure energies and LDOS 

more precisely, 
• see and quantify defects, 
• determine interface dipoles 

and band alignment, and 
• use interface engineering to 

control effective work 
function… + -
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Densities of states and band 
gaps from various high-K 
dielectrics on Si
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Work function – real and linguistic issues
• Work function (or vacuum work function) – minimum 

energy to remove an electron from a solid to >1nm.  
work function ≠ electrochemical potential

• Many ways to measure work function: UPS, kelvin
probe, thermionic emission….

• “Effective work function” in devices – fictitious quantity, 
qualitatively assumed to be related to the real work 
function, that is used to explain band alignment between 
solids – defects that can charge and interface dipoles 
must be included in model

reactiondipolesMIGSmechmvacmeffm ,,,arg,,, ΔΦ+ΔΦ+Φ=Φ

Rutgers, 
UTAustin, 
Sematech,
NCSU, etc.
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Interface Chemistry - Al/HfO2/GeOx/Ge and Al/HfO2/SiOx/Si 

Hf4f and VB shift

No significant
reduction
of HfO2 in Hf4f

Interfacial oxide
reduction at 300 K

Oxidation of Aluminium 
Formation of a Al2O3 layer

Si

SiO2

HfO2

Al
Al O2 3

Al 2p
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High-K oxides under low-energy radiation

Gap states

O 2s

No change in 
VB position

• Gap states creation in HfO2
upon electron beam exposure 
(less pronounced w/photons).

• 20eV electrons; ~1015/cm2

• Electron-stimulated oxygen 
desorption? 

• K-F mech?

Hints of oxide reduction in Al2O3
as a function of x-ray exposure 
(from red to blue), but much less 
extensive than in HfO2.
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Metal / oxide interaction upon x-ray exposure

Al on SiO2
Al 2p

Al on SiO2
Si 2p

Radiation induced interface chemistry!

Several monolayers of oxygen move.

Metal peak 
(as dep.)

Oxide peak 
grows after 
radiation

SiO2 is reduced 
upon irradiation, 
O transfers to Al
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Plans
• Pursue high-K/metal gate integration on III-Vs and Ge
• Correlate physical measurement results with electrical 

methods (vis a vis defects).  
– Thermal and chemical stability of passivation layers on III-V surfaces 

and relation to defect conc:  Si, S, etc.
– Correlate S content and location with electrical properties 

• Explore Ef pinning and relation to interface composition 
in alt. channel materials

• Monitor H/D concentration and profiles in alternative 
channel materials, and explore radiation induced defect 
generation.

• Explore defects in Ge nanowire FETs
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Sayan, Mateus Dalponte, Sylvie Rangan, Tian Feng, Eric Bersch
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Selected Recent MURI-related Publications (past year):
• L. V. Goncharova, M. Dalponte, T. Gustafsson, O. Celik, E. Garfunkel, P. S. Lysaght and G. 

Bersuker; Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks, J. Vac. 
Sci. Tech. A 25, 261 (2007). 

• C.M. Osburn, T. Gustafsson, E. Garfunkel, et al; Materials and Processes for High k Gate 
Stacks: Results from the FEP Transition Center, ECS Transactions, 3, (3) 389 (2006).

• E. Garfunkel, T. Gustafsson, P. Lysaght, S. Stemmer, R. Wallace; Atomic Scale Materials 
Characterization Challenges in Advanced CMOS Gate Stacks, Future FAB International 21, 
126 (2006). 

• L.V. Goncharova, D.G. Starodub, E. Garfunkel, T. Gustafsson, V. Vaithyanathan, J. Lettieri, 
D.G. Schlom; Interface structure and thermal stability of epitaxial SrTiO3 thin films on Si(001), 
J. Appl. Phys. 100, 014912 (2006).

• L.V. Goncharova, M. Dalponte, D.G. Starodub, T. Gustafsson, E. Garfunkel, P.S. Lysaght, B. 
Foran, J. Barnett, G. Bersuker; Oxygen diffusion and reactions in Hf-based dielectrics, J. Appl. 
Phys. 89, 044108 (2006). 

• R. Barnes, D. Starodub, T. Gustafsson, E. Garfunkel; A medium energy ion scattering and x-
ray photoelectron spectroscopy study of physical vapor deposited thin cerium oxide films on 
Si(100), J. Appl. Phys. 100, 044103 (2006). 

• B. Chen, R. Jha, H. Lazar, N. Biswas, J. Lee, B. Lee, L. Wielunski, E. Garfunkel, V. Misra; 
Influence of Oxygen Diffusion Through Capping Layers of Low Work Function Metal Gate 
Electrodes, IEEE Electron Device Letters 27, (4) p. 228 (2006).

These and other papers can be downloaded at:  
http://rutchem.rutgers.edu/faculty/garf/publications.html

http://rutchem.rutgers.edu/faculty/garf/publications.html
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