Materials stability, band alignment and defects in CMOS nanoelectronics

Team members: L. Yu, T. Feng, H.D. Lee, C.L. Hsueh, A. Wan, Q. Jiang, L. Goncharova, S. Rangan, D. Mastrogiovanni, E. Bersch, O. Celik, R. Bartynski, L. Feldman, T. Gustafsson and E. Garfunkel Departments of Physics and Chemistry Rutgers University, Piscataway, NJ

Collaborators:

Vanderbilt team; Sematech team - Bersuker, et al.

plus researchers at NIST, NCSU, Stanford, IMEC, UT-A, UT-D, Penn State, UCSB, IBM, Intel, AMAT, TI, Freescale, Taiwan

Support: Vanderbilt MURI (AFOSR) and SRC

Motivation: Help develop a fundamental understanding and control of radiation induced defects in future CMOS materials.

Rutgers team uses high resolution characterization tools to:

- Determine composition, structure and electronic properties of gate stacks that use new (post-Si) materials
- Help determine physical and chemical nature of pre-existing and radiation induced defects

Experimental studies of High-k on Ge and III-V substrates:

- Composition and depth profiling –XPS, MEIS, RBS, SPM...
- Electronic structure PES, IPE, optical and electrical methods
- Surface/interface passivation chemistry and relation to defects

Current Rutgers work on CMOS gate stacks

- Ion scattering MEIS, RBS, LEIS
- Electronic structure XPS, UPS, InvPES, IntPES
- Microscopy TEM, SEM, AFM....
- Alternative substrates: Ge, GaAs, InGaAs
- Defect radiation induced, processing induced, etc.
- Etching chemistry and roughness
- Film stoichiometry and thickness for multilayer structures
- Diffusion/atomic mobility (O, Si, N, metal, etc...)
- Dopant profiling and diffusivity As, Sb, Bi, In, Ga
- Film initiation and growth (esp. for ALD growth)
- Influence of interface layers (diffusion barrier, growth initiator, work function engineering)
- Metal gate/high- κ dielectric film and interface stability
- Impurity concentration/profile C, H, ...
- Epitaxial oxides e.g. STO/Si, La compounds

Vanderbilt MURI Review May 13-14, 2008

MEIS (Medium Energy Ion Scattering)

Low-energy version of RBS with high depth resolution (~ 3 Å vs. ~100 Å)

Electronic structure and band alignment

w/Bartynski

Other newly installed/commissioned equipment

UHV transfer system for growth and film analysis

Several ALD growth systems

Not shown: New photoemission system (XPS and UPS); new electrical testing system (Keithley 4200)

Several Ge MOSFET issues

Unlike SiO₂, GeO₂ is relatively unstable and dissolves in water. GeO is less water soluble, but more defective.

Film defects, interfacial GeO_x, and impurities such as CH_x and GeC increase defect density and degrade device performance. How to create an optimal interface?

Can a high-K dielectric be integrated on a Ge channel?

Ge good for PMOS and NMOS?

Native oxides and carbon on Ge

None of the reported wet-chemical cleaning methods leads to an impurityfree Ge surface. Alternative approach: Convert hard-to-remove species into other chemical species which are easier to remove.

Some chemistries explored:

- De-ionized water; HF; DIW/H₂O₂
- HF/DIW/H₂O₂
- NH₄OH/H₂O₂
- HCI/H₂O₂
- H_2SO_4

Sulfur-passivation in hot $(NH_4)_2S$ on H_2SO_4/H_2O_2 -treated Ge

- (NH₄)₂S etches oxide
- Thin GeO_xS_y layer remains
- H₂SO₄/H₂O₂ and (NH₄)₂S treatment results in low C

•Starting surface has GeO, GeO₂, hydrocarbon, carbon....

•Some chemistries leave a thick oxide or sulfide.

Ge cleaning / oxidation

- XPS of Ge3d and C1s spectra of oxidized and S-passivated samples.
- No chemistry resulted in a C-free surface, but optimal ones lower the carbon and other impurities significantly.

Ion Scattering (MEIS and RBS)

S-Passivation Improves the Interface

Vanderbilt MURI Review May 13-14, 2008

RUTGERS

Cleaning	HF	HF/DIW/H ₂ O ₂	H_2SO_4/H_2O_2 HF	H ₂ SO ₄ /H ₂ O ₂
S-passivation	No	Yes	Yes	Yes
Q _i /e (cm⁻²)	4.00x10 ¹³	4.17x10 ¹²	3.56x10 ¹²	3.19x10 ¹²
Q _{HS} /e (cm ⁻²)	1.15x10 ¹³	2.09x10 ¹²	1.5x10 ¹²	9.72x10 ¹¹
$\Delta V_{FB_{HS}}(V)$	0.31	0.29	0.22	0.15
D _{it} (eV ⁻¹ cm ⁻²)	3.80x10 ¹²	1.66x10 ¹¹	8.91x10 ¹⁰	6.23x10 ¹⁰

No HF used before sulfiding in $(NH_4)_2S$.

sulfiding in $(NH_4)_2S$. APL 89, 112905 (2006)

Summary Ge results

- Ge based high-k dielectric MOSCAPs have been grown and show very good electrical properties.
- MOSCAP properties are a strong function of surface cleaning and passivation. Wet chemistry is critical, and must be controlled with reproducible conditions (purity, temperature, concentration, pH, time etc.).

 Variations in surface treatment and ALD growth show up clearly in physical characterization (XPS, MEIS, etc.) and can be correlated with defects such as interface state density.

GaAs – based stacks

- How best to grow a high-K/metal electrode gate stack on GaAs-based channels with high quality interface?
- Can we use cleaning and passivation chemistries on GaAs that were found to produce optimal Ge/high-K gate stacks?
- Do ALD high-K growth chemistries and conditions that work on Si and Ge also work on III-V films?
- Do we need SiO₂, nitride, Al₂O₃ or other interlayer materials and structures to minimize defect density and produce viable gate stacks?

S Passivation of GaAs-based compounds

Using new wet chemical treatments, we can produce a film in which there is no native oxide on the GaAs surface and a relatively passive sulfide layer

MEIS of ALD-grown Al₂O₃/GaAs

• One single uniform layer of $AI_{1.7}O_3$ (20Å, a little offstoichiometry) on the surface fits the data well; the data indicate little roughness on this film.

• Native oxides on GaAs result in an interface GaAs peak larger than one on a passivated sample (see below).

Element	Concentration ×10 ¹⁵ [atoms/cm ²]
AI	8.7
O (not including native oxide)	15.0

- One single uniform layer of Al_2O_3 (20Å, 20 cycles) on the surface fits the data well, indicating little roughness.
- High background due to poor
- No S observed.

Element	Concentration ×10 ¹⁵ [atoms/cm ²]
AI	9.4
0	14.2

Rutgers

MEIS of ALD-grown HfO₂/GaAs

- No S remains on the S-passivated sample
- Film not perfectly flat (non-uniform initial nucleation).
- More oxide at the interface of HfO₂/GaAs w/o S-passivation

Multilayer HfO_x/Al₂O₃/GaAs gate stack MEIS

• HfO_x ~ 20Å (20cycles), Al₂O₃ ~ 15Å (15cycles), interface GaAsO_x ~ 30Å.

• The HfO_x layer appears somewhat rough: Al has to be included in HfOx layer to fit both Hf and Al peaks with a uniform-layer model.

Element	Concentration ×10 ¹⁵ [atoms/cm ²]
Hf	1.74
AI	10.54
O (not including native oxide)	20.67

- Similar rough structure as non-passivated sample.
- No S observed in this passivated sample.

• Reduced height of GaAs peak might be due to the removal of native GaAs oxide during etching, resulting in better crystalinity of GaAs.

Element	Concentration ×10 ¹⁵ [atoms/cm ²]		
Hf	1.8		
AI	10.44		
0	16.14		

TEM for GaAs/HfO₂/TaN Gate Stack

A TEM image of a GaAs sample with following process: native oxide etched, sulfur passivated, HfO_2 grown by ALD, TaN metal grown by PVD.

From TEM images (and microscopic elemental analysis, AFM, etc.), we find that the interface roughens after this specific chemical oxidation and passivation

GaAs with S-passivation XPS band alignment (highly doped n and p-type)

- Partial pinning of the Fermi level at S-passivated surface
- Results imply a ~0.4±0.05 eV upward band bending for n-GaAs, ~0.4±0.05 eV downward band bending for p-GaAs

Vanderbilt MURI Review May 13-14, 2008

• Little difference in interface chemistry between HfO₂ on S-passivated and HfO₂ on native oxide sample.

•Ga 2p is single Gaussian (consistent with GaAs), no GaO_x or AsO_x in O 1s signal

Shift between n-type and p-type samples ~1.2 1.4 eV means the Fermi level is not strongly pinned.

• Results imply that the interfacial O and S are likely removed during high-K growth.

21

HfO₂ on S-passivated n- GaAs

- S-passivated film Fermi levels partially pinned.
- After HfO₂ growth, little pinning.
- Conduction and valance band offsets agree with literature.

Summary GaAs results

Electronic structure of various films and interface passivation routes examined. The removal of the native oxide and passivation of GaAs surface is effective.

Appropriate band alignment and little Fermi level pinning found for some passivation and film growth conditions.

Exploring new routes to decrease roughening during the wet chemistry

> Device measurement in progress

Band Edge Determination

Band Gap Measurements

Comparison To Literature

Method	Gap	VBO	CBO
XPS, energy loss ⁸	6.95	3.75	2.08
XPS, energy loss ¹⁵	6.52	3.03	2.37
XPS , energy $loss^{26}$	6.7	2.9	2.7
IntPE ¹²	6.2	2.95	2.15
SE^{27}	6.26		
BEEM ²⁸			2.8
This work	7.0	3.2	2.7

Al_2O_3

Method	Gap	VBO	CBO
XPS , energy $loss^{25}$	5.65	3.65	0.88
XPS, energy loss ⁸	5.50	3.35	1.03
XPS, energy loss ²⁶	5.6	2.5	2.0
XPS, UPS ¹¹	5.7	3.4	1.2
XPS, IPS ²³	5.68	3.40	1.16
$IntPE^{12}$	5.4	2.3	2.0
EELS ²¹	5.0		
This work	5.5	2.8	1.6

Method	Gap	VBO	CBO
XPS, energy loss ¹⁴	5.7	3.10	1.48
XPS, energy loss ¹⁵	5.25	2.22	1.91
XPS, IPS ¹⁶	5.86	3.28	1.46
XAS, XPS^{17}	5.1	3.0	1.0
UPS^{18}		2.75	—
$IntPE^{19}$	5.6	2.5	2.0
XAS^{20}	6.0		≥ 1.2
EELS ²¹	5.8		—
SE^{22}	5.8		—
This work	5.7	2.7	1.9

HfO₂

Method	Gap	VBO	CBO
XPS, energy loss ⁸	8.95	4.49	3.34
XPS, UPS^{11}	9.0	4.4	3.5
$IntPE^{12}$			3.15
XPS^{10}		4.35	
$\rm XPS^{?}$	8.95	4.54	3.28
This work	8.9	4.5	3.3

SiO₂

Vanderbilt MURI Review May 13-14, 2008

Ru/HfO₂/Si

RUTGERS

Metal Interaction with the Substrate

Summary

Ge and GaAs based high-k dielectric MOSCAPs have been grown. Electronic and chemical structure of various films and interface passivation routes examined.

Ge MOSCAPs show good electrical properties. Electrical properties are a strong function of surface cleaning and passivation. Wet chemistry is critical, and must be controlled with reproducible conditions (purity, temperature, concentration, pH, time etc.).

Variations in surface treatments also show up clearly in physical characterization (XPS, MEIS, etc.) of both Ge and GaAs, and can be correlated with defects such as interface state density.

Favorable band alignment found for some passivation and film growth conditions. Fermi level pinning (of interface defects?) appears not to be critical if film grown properly.

Plans

- Pursue high-K/metal gate integration on III-V's and Ge.
 - Correlate defect generation rate with E_{gap} and e-h pair generation probability of semiconductor and metal layers adjoining dielectric
 - Correlate physical and electrical measurements of "intrinsic" and "radiation induced/enhanced" defects
 - Thermal and chemical stability of passivation layers on III-V surfaces and relation to defect conc: Si, S, N, AI, etc.
 - Explore E_f pinning and relation to interface composition in Ge and III-V's
 - Monitor H/D concentration/profiles in post-silicon materials and radiation induced changes in them
- Explore radiation induced defects in organic, nanowire, MEMS other novel devices.

Recent MURI-related publications:

- L.V. Goncharova, et al; *Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks*, J. Vac. Sci. Tech. A 25, 261 (2007).
- N. Goel, et al; Band offsets between amorphous LaAIO₃ and InGaAs, Appl. Phys. Lett. 91, 113515 (2007).
- M. Dalponte, et al. *MEIS study of antimony implantation in SIMOX and vacancy-rich Si,* J. Phys. D: Appl. Phys. **40**, 4222, (2007).
- S. Rangan, et al, GeO_x interface layer reduction upon Al-gate deposition on a HfO₂/GeO_x/Ge stack, Appl. Phys. Lett. 92, 172 (2008).
- E. Garfunkel, G. Bersuker and J. Gavartin, *Defects in CMOS Gate Dielectrics*, to be published (2008).

These and other papers can be downloaded at: http://rutchem.rutgers.edu/faculty/garf/publications.html