

May , 2008

Radiation Effects on Emerging Electronic Materials and Devices

Radiation Effects in Emerging Materials

Overview Leonard C. Feldman

Vanderbilt University And Rutgers University

Topics of Interest

Basic radiation interaction with electronic materials-review, educational

Alternate Dielectrics and Gate Stacks-in all aspects-growth, spectroscopy, radiation effects a major emphasis on nano-scale structure--

SiGe devices and other "alternate substrates" (Ge, InGaAs, SiC)

Strained silicon

Basic radiation interaction with electronic materialsmodifications at the nanoscale

Nanoscale:

Basic theory of e-h pair production, particularly $\underline{\epsilon}$, the average energy required for e-h pair creation, is based on bulk concepts, including bulk density of states.

The nanoscale thicknesses, and the new understanding of nanoscale effects calls for re-examination of these concepts.

 $\Delta V=Q/C=N_e \{(dE/dx) t_{ox}/\epsilon\} /C$

ε= average energy/e-h pair

N_e= number of electrons penetrating the dielectric

BASIC PROCESSES /A) RADIATION DAMAGE STUDIES AN UNDERSTANDING OF THE BASIC RADIATION DAMAGE PROCESSOS LEADS TO CLORIFICATION OF THE EXPONIMENTS AND THERE SIGNAL CANCE COMPARISONS OF PHOTONS AND PROTONS (IONS) PROVIDES NOW INSIGHTS WE SHOULD ALL KNOW IT COR RE REMINDED OF IT IN ANY CALG.

CVS and irradiation - 7.5 nm/1

nm

Rutgers CMOS Materials Analysis

Use high resolution characterization methods to:

- Determine composition, structure and electronic properties gate stacks that use new (post-Si) materials
- Help determine physical and chemical nature of radiation induced defects

Surface/interface analysis:

- Ion scattering: RBS, MEIS, NRA, ERD composition, crystallinity, depth profiles, H/D
- Direct, inverse and internal photoemission electronic structure, band alignment, defects
- Scanning probe microscopy topography, surface damage, electrical defects

Motivation: Help develop a fundamental understanding and control of radiation induced defects in future CMOS materials.

Rutgers team uses high resolution characterization tools to:

- Determine composition, structure and electronic properties of gate stacks that use new (post-Si) materials
- Help determine physical and chemical nature of pre-existing and radiation induced defects

Experimental studies of High-k on Ge and III-V substrates:

- Composition and depth profiling MEIS, XPS, RBS...
- electronic structure PES, IPE, optical and electrical methods...

Materials stability, band alignment and defects in CMOS nanoelectronics

L. Goncharova, S. Rangan, O. Celik, C.L. Hsueh, R.A. Bartynski, T. Gustafsson and E. Garfunkel Departments of Chemistry and Physics, and Institute for Advanced Materials, Devices and Nanoelectronics Rutgers University, Piscataway, NJ

Collaboration: Vanderbilt, Sematech, NIST, IMEC, IBM, Intel, Bell Labs, NCSU, Penn State, Stanford, UT-Dallas, UT-Austin, Albany....

S-passivated film Fermi levels partially pinned; after HfO2 growth, little pinning.

Conduction and valance band offsets measured; agree with literature.

GaAs surface passivation and gate stack growth:

GaAs with S-passivation XPS band alignment (highly doped n and p-type)

GaAs/HfO₂/TaN Gate Stack

• Shift in photoemission peaks between n-type and p-type samples ~1.2-1.4 eV means *the GaAs Fermi level is not strongly pinned by HfO*₂.

A TEM image of a GaAs sample with following process: native oxide etched, sulfur passivated, HfO2 grown by ALD, TaN metal grown by PVD.

From TEM images (and microscopic elemental analysis, AFM, etc.), we find that the interface roughens after this specific chemical oxidation and passivation

Defects in the post-Si era: Al/HfO₂/In_xGa_{1-x}As

- Surface passivation and composition of interfacial layer
- High-K deposition
- Post-deposition annealing
- Metal gate effects
- "Normal" and radiation induced defects nature and evolution

HfO₂ sample details

HfO, based nMOSFET

Samples

- State-of-the-art samples, SEMATECH, Inc.
- 65 nm technology node
- nMOSFETs with W/L = 10 μ m/0.2 μ m
- t_{phys} = 7.5 nm and 3.0 nm (EOT = 1.2 nm and 0.5 nm)
- SiO_2 interlayer (~ 8Å)

Experimental

- 10 keV X-rays, RT irradiation
- Function of dose
- Function of bias
- Characterization done using
 - I-V measurements

C-V - Comparison (Theory & Measured)

Materials analysis - HfO₂/SiO₂ IL/Si

RBS/MEIS - HfO₂/SiO₂ IL/Si

Feldman *et al.*, Material analysis by ion-channeling: Submicron crystallography, Academic Press, NY, 1982

RBS/MEIS - HfO₂/SiO₂ IL/Si

'O' concentration

Samples	'O' expected	'O' RBS	'O' MEIS
	$(10^{15} at/cm^2)$	(10 ¹⁵ at/cm ²)	$(10^{15} at/cm^2)$
3nm/1nm	21.28	21.9 ± 0.2	22.37
7.5nm/1nm	46.0	45.5 ± 0.2	36.82
3nm/2nm	25.28	24.2 ± 0.2	20.16
7.5nm/3nm	54.4	55.1 ± 0.3	55.81

Interlayer 'O' concentration

Samples	IL 'O' expected	IL 'O' RBS
	$(10^{15} at/cm^2)$	$(10^{15} at/cm^2)$
3nm/1nm	4.84	5.32 ± 2.01
7.5nm/1nm	4.84	5.10 ± 2.42
3nm/2nm	8.80	8.02 ± 2.32
7.5nm/3nm	13.2	13.6 ± 2.92

MEIS - HfO_2/SiO_2 IL - 3nm/1 nm

No Anneal

Element	Concentration ×10 ¹⁵ [atoms/cm ²]	
Hf	8.32	
Si	3.87	
О	22.37	

700 C NH₃ Anneal

0.97

Si (surface)

Total dose results comparison

Key results 3 nm HfO₂/2 nm SiO₂

• IL O leaching 7.5 nm HfO₂ (exposure t at higher temp. growth^{a,b})

I-V sweeps modify the charge (~ 50%)
(border traps in the SiO₂ IL^c)

• Residual V_T after stabilization (traps in HfO₂ and/or away from interface)

> ^aBersuker *et al.*, JAP, vol. 100, p. 094108, 2006, ^bRyan *et al.*, APL, vol. 90, p. 173513, 2007, ^cFleetwood *et al.*, *IEEE TNS*, vol. 39, p. 269, 1992.

Dixit et al., manuscript to be submitted to APL, 2008

A New Dielectric Degradation Phenomenon in High-k Devices

Gennadi Bersuker, SEMATECH

- Hole traps are generated in the interfacial layer of nMOS high-k devices during inversion stress; tentatively attributed to N species in high-k stack
- → may affect evaluation of radiation-induced degradation mechanism

Hole trap location