

<u>S.K. Dixit^{1, 2}, T. Feng⁶ X.J. Zhou³, R.D. Schrimpf³, D.M. Fleetwood^{3,4}, S.T. Pantelides⁴, C.D. Young⁵, G. Bersuker⁵, E. Garfunkel⁶, and L.C. Feldman^{1, 2, 4, 6}</u>

¹Interdisciplinary Materials Science Program
 ²Vanderbilt Institute of Nanoscale Science and Engineering
 ³Department of Electrical Engineering & Computer Science
 ⁴Department of Physics & Astronomy
 Vanderbilt University, Nashville, TN - 37235, USA
 ⁵SEMATECH, Inc., Austin, Texas 78741, USA
 ⁶Department of Physics
 Rutgers University, Piscataway, NJ - 08854, USA

THE STATE UNIVERSITY OF NEW JERSEY

NC STATE UNIVERSITY

IVERSITY OF Georgia

Radiation damage in Hafnium oxide

Previous radiation studies:

Most of the work on thicker oxides, mostly on capacitors

- Electron trapping reported. Kang et al., APL, vol. 83, p. 3407, 2003
- Hole trapping studied. Felix et al., Microelectron. Engrg., vol. 44, p. 563, 2004, Ryan et al., IEEE TNS, vol. 52, p. 2272, 2005

This work:

- Radiation studies on HfO₂-based MOSFETs
- Dose response of ultrathin gate oxides
- Identify the bias stress contribution for pure rad response
- Study as a function of SiO₂ IL and bulk HfO₂ thickness

Improved trapping efficiency calculations

Device processing & irradiation

Materials and Device Characterization

Before irradiation

Hafnium oxide - Materials perspective

Zhao et al., PRB, vol. 65, p. 233106, 2002

- Structure Monoclinic crystallites in amorphous matrix
- > Pure HfO₂ crystallizes at high temp., trapping increases with defects at GBs
- > Alloying of Si increases the thermal budget, κ reduced, affects C_{ox}

SiO₂ interlayer improves mobility, intermixing issues, amphoteric traps Callegari *et al.*, JAP, v.90, p. 6466, 2001

MURI - Annual review

Materials analysis - HfO₂/SiO₂ IL/Si

C-V - Comparison (Theory & Measured)

Comparison 7.5 nm and 3 nm HfO₂ samples

Threshold voltage shifts at -2 MV/cm and +3 MV/cm gate bias

Sample with minimal injection desired - pure radiation response

13th May, 2008

CVS and irradiation - 3 nm/2 nm

CVS and irradiation - 3 nm/2 nm

Key findings - 3 nm $HfO_2/2$ nm SiO_2

IL better blocking electrode (no charge injection)

> Pure radiation response of \sim 50 mV (predominant hole trapping)

Lowest J_a ~ 8 x 10⁻⁴ A/cm² (minimal neutralization of trapped charge)

Felix *et al.*, Microelectron. Engrg., vol. 44, p. 563, 2004 Ryan *et al.*, IEEE TNS, vol. 52, p. 2272, 2005 Foster *et al.*, PRB, vol. 65, p. 174117, 2002. Bersuker *et al.*, JAP, vol. 100, p. 094108, 2006, Ryan *et al.*, APL, vol. 90, p. 173513, 2007

Total dose results comparison

Dixit et al., manuscript to be submitted to APL, 2008

Key results 3 nm HfO₂/2 nm SiO₂

• IL O leaching 7.5 nm HfO₂ (exposure t at higher temp. growth^{a,b})

I-V sweeps modify the charge (~ 50%)
 (border traps in the SiO₂ IL^c)

• Residual V_T after stabilization (traps in HfO₂ and/or away from interface)

^aBersuker *et al.*, JAP, vol. 100, p. 094108, 2006,
^bRyan *et al.*, APL, vol. 90, p. 173513, 2007,
^cFleetwood *et al.*, *IEEE TNS*, vol. 39, p. 269, 1992.

Conclusions - HfO₂ based MOSFETs

3 nm/1 nm devices radiation tolerant and resistant to constant-voltage stress

Total dose comparison between 7.5 nm/1 nm and 3 nm/2 nm MOSFETs suggest substantial hole trapping in the SiO₂ IL

Residual V_T shift suggest the presence of some of the holes trapped charge away from the interface, probably in the HfO₂ bulk

Acknowledgements

Vanderbilt

- Dr. Leonard C. Feldman (advisor)
- Dr. Sokrates T. Pantelides
- Dr. Ronald D. Schrimpf
- Dr. Daniel M. Fleetwood

Rutgers

- Dr. Eric Garfunkel
- Dr. Torgny Gustafsson
- Dr. Lyudmila Goncharova
- Mr.Tiang Feng (Ph.D. candidate)

SEMATECH, Inc.

- ✤ Dr. Gennadi Bersuker
- Dr. Chadwin Young
- Dr. Rino Choi

Group Members

- Dr. S. V. S Nageswara Rao
- Dr. Sarit Dhar
- Dr. John Rozen
- Dr. Anthony B. Hmelo

Special thanks to INTERNATIONAL SEMATECH, Inc. for their collaboration in this research effort.

This work was supported in part by the Air Force Office of Scientific Research (AFOSR) through the MURI program

Publications

Published work

S. K. Dixit, X. J. Zhou, R. D. Schrimpf, D. M. Fleetwood, S. T. Pantelides, R. Choi, G. Bersuker and L. C. Feldman, "Radiation induced charge trapping in ultrathin HfO₂-based MOSFETs," *IEEE Trans. Nucl. Sci.*, vol. 54, pp. 1883-1890, 2007.

Manuscripts in preparation

- 2) S. K. Dixit, E. Garfunkel, C. D. Young, G. Bersuker, and L C. Feldman, "Physical and electrical characterization for bulk HfO₂ and SiO₂ interlayer (IL) thickness verification in advanced gate stacks," manuscript to be submitted to *J. Appl. Phys.*
- **3)** S. K. Dixit, X. J. Zhou, R. D. Schrimpf, D. M. Fleetwood, C. D. Young, G. Bersuker and L. C. Feldman, "Hole trapping in HfO₂-based MOSFETs studied as a function of varying HfO₂ bulk and SiO₂ interlayer (IL) thicknesses," manuscript to be submitted to *Appl. Phys. Lett.*