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Outline 

•  Finite Element Discretization 
•  Adaptive Gridding  
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FLOOPS / FLOODS (FLOOXS) 

•  Florida Object Oriented Process/Device Simulator 

•  Immediate prototyping and testing of new models 

•  Multi-dimensional (1-D, 2-D, 3-D) 
•  P = Process / D = Device 90% code shared 
•  Scripting capability for PDE’s - Alagator 
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FLOODS Simulation Tool Enhancements 

•  Finite Element Discretization 
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FEM Discretization Motivation 

•  Commonly-used Finite-Volume “Scharfetter-Gummel” method 
convergence problems 

•  Why? Particle strikes can generate carriers throughout the 
device -> rarely aligned with the grid  

2006 Vanderbilt “Radiation Effects” MURI Review 
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•  The set of coupled, time-dependent partial differential 
equations (PDEs) that govern semiconductor device 
behavior can be written as 

Device Simulator Discretization 

1. Poisson Equation 

2. Electron Continuity Equation 

3. Hole Continuity Equation 

ε - dielectric permittivity    ψ - electrostatic potential 
n, p - electron, hole densities  Jn, Jp – electron, hole current densities 
Up, Un - net recombination rates 
ND

+, NA
- - ionized donor and acceptor densities 
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Discretization Method Comparison 

Method Finite Volume 
Scharfetter-Gummel (FVSG) 

Finite Element 
Quasi-Fermi (FEQF) 

Solution Variables n, p, ψ ϕn, ϕp, ψ 

Current Density Jn,p  Defined on Edges Continuous 

Drift-Diffusion 
Current Density Boltzmann Relations Quasi-Fermi 

Current Density 
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Discretization - Node Randomization 

•  Each mesh node randomly displaced by up to 40% 
•  The randomization of the grid created a large number of obtuse triangles 

(negative edge couplings) 
•  Results for both FEQF and FVSG methods were compared against equivalent 

structures with ideal meshes.  
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Quasi-Fermi Method – Transient Results 

•  FEQF -> fewer Newton steps to converge (simulation time 
savings)  

•  Transient convergence stability 
–  Better handling of isotropic current flow.  
–  Converges even if all charge is deposited at t=0 
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Adaptive Gridding - Concept 
•  Transient vs. DC simulations 

–  Transient simulations require up to 100’s of time steps 
•  Single Event simulations focus on transient behavior 
•  Adaptive gridding -> time benefit 

–  Reduce number of nodes as transient progresses 

t = 0, nodes=3000  t > 0, nodes=2000 t >> 0, nodes=1000 
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Adaptive Gridding – Motivation 

•  Need ways to reduce transient simulation time 
•  Solution time increases rapidly based on the number 

of grid points ‘nodes n’ -> simulation time ∝ n1.75    
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Adaptive Gridding - Methodology 

Adaptively Refine  
Grid ‘x’ times 

DC Bias  
Solution 
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Adaptive Gridding – SET Results 

•  Preliminary 2-D results (N+/P diode transient): 

•  Time benefit / accuracy tradeoff 

V=5 

N+/P diode 
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Physical Model Improvements 

•  Finite Element Discretization 
•  Adaptive Gridding  
•  Mobility Modeling 

–  Proposed Mobility Model 
–  Piezoresistance Model 

•  Strained-Si Simulations 
–  N+/P Diode 
–  MOSFET 

•  Summary 
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Proposed Mobility Model (Silicon) 

            Parameter 

Model            
Majority Carrier 

Mobility 
Minority Carrier 

Mobility 
Carrier-Carrier 

Scattering 
Temperature 
Dependence 

Proposed + + + + 
Philips  + + - + 
Dorkel-Leturcq  - n/a + + 
Masetti  + n/a n/a n/a 
Arora  - n/a n/a + 
Caughey-Thomas  - n/a n/a n/a 

+  Accurate model fitting to experimental data 
-  Loose approximation to experimental data 
n/a  Not available in model 

Qualitative Comparison of Commonly Used Bulk Silicon Mobility Models 

•  Mobility model -> simulation results 
•  Existing bulk models not accurate for single-event simulations 

(high-injection e-h pair conditions) 
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Majority Carrier Mobility 

low concentration 
fitting 

high concentration 
fitting 
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Minority Carrier Mobility 

low concentration 
fitting 

mid-high  
concentration 

fitting 
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Carrier-Carrier Scattering 

Conwell-Weisskopf carrier-carrier 
 formulation proposed by Choo[5]: 
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Simulation vs. Experiement  

•  Reverse-biased N+/P diode (TNS 2009 – H. Park) 
•  Single-photon absorption 

- laser energy = 13.5 pJ, radius = 6 µm 

Note: Constant mobility µe=1417, µh=470.5 cm2/V·s  
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Simulation Results - Continued 

•  Reverse-biased Si N+/EPI/P+ diode 
•  Cylindrical Gaussian, LET = 20 MeV-cm2/mg  
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Simulation Results – Computation time 

•  The proposed model performed well in terms of 
computational efficiency 

•  Example: 3-D n+/p diode structure composed of ~6000 
volume elements 

•  Matrix assembly and linear solution time:  
–  9.66 seconds per Newton step for the proposed model 
–  9.73 seconds per Newton step for the Philips model.  
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Piezoresistance mobility model 

•  Piezoresistivity is the change in electrical resistivity with 
mechanical stress 
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FLOODS Simulation Tool Enhancements 

•  Finite Element Discretization 
•  Adaptive Gridding  
•  Mobility Modeling 

–  Proposed Mobility Model 
–  Piezoresistance Model 

•  Strained-Si Simulations 
–  N+/P Diode 
–  MOSFET 

•  Summary 
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Current Transients under Uniaxial Stress 

current 

Time 
How does different type of stress change current transient in diodes?  

(Imax : peak current, Q: charge collection) 

No Stress 
Compressive Stress 

Tensile Stress 

Min, 2008 V=5 

N+/P diode 
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 Experiment vs. 2-D Simulation results  

Experiment (H. Park) FLOODS 2-D Simulation 

2D simulation results are in agreement with experimental ones. 
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Strained-Si MOSFET 

Simulation Work: 
•  Match curves for current transients under uniaxial 

stress following experiment (MOSFET – H. Park) 
•  Compared I-V characteristics 

for MOSFET devices with and  
without process induced strain 
for the same technology node 

•  Verify FLOOXS output 
•  Predictive SEU simulations 

FLOOXS predicted stress profile [dyne/cm2] 
(Y component) ~1 GPa in channel region 

compressive SiGe  SiGe 

capping layer 

X 

Y 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Hydrogen 
•  Simulate in FLOODS 

–  Hydrogen Soak Anneals 
–  Co-60 Radiation Exposure 
–  Diffusion + Field Transport 
–  Hole / Hydrogen / Vacancy / 

Nit Interactions in Oxides 

TNS, TBP - Vanderbilt + UF 

•  Sensitivity Analysis 

•  Include and Verify Reactions 
from DFT Results (Tuttle) 
–  Vo  +  h+      Vo

+ 

–  H2  +  Vo
+    VoH + H+ 

–  e-   +  Vo
+    Vo 

–  VoH  +  h+   Vo + H+ 

–  Si-H + h+    DB + H+ 

–  DB + h+      DB+ 

–  DB+ + H2    Si-H + H+ 

•  Match Nit Measurement (Vanderbilt) 
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Summary 

•  Simulation tool enhancements (time & convergence):  
–  Finite Element Discretization                (SISPAD 2009) 
–  Adaptive Gridding                                 (NSREC 2010) 

•  Physical model improvements (accuracy) 
–  Proposed Mobility Model             (TNS - under review)  
–  Piezoresistance model 

•  Applications 
–  Strained-Si Diode               (TNS 2009) 
–  Strained-Si MOSFET                                (in progress)  
–  Hydrogen 
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THANKS! 


