

Physics for Simulation of Single-Event Transients

<u>Daniel J. Cummings</u>¹, Hyunwoo Park¹, Nicole Rowsey¹, David Hughart², Arthur Witulski², Ronald D. Schrimpf², Scott E. Thompson¹ and Mark E. Law¹

> ¹ Department of Electrical & Computer Engineering, University of Florida ² Department of Electrical Engineering & Computer Science, Vanderbilt University

Outline

FLOODS Simulation Tool Enhancements

Phy<mark>sical M</mark>odel Improvements

App	olicatio	ons		

- Finite Element Discretization
- Adaptive Gridding
- Mobility Modeling
 - Proposed Mobility Model
 - Piezoresistance Model
- Strained-Si Simulations
 - N+/P Diode
 - MOSFET
- Summary

FLOOPS / FLOODS (FLOOXS)

- Florida Object Oriented Process/Device Simulator
- <u>Immediate</u> prototyping and testing of new models
- Multi-dimensional (1-D, 2-D, 3-D)
- P = Process / D = Device 90% code shared
- Scripting capability for PDE's Alagator

FLOODS Simulation Tool Enhancements

FLOODS Simulation Tool Enhancements

Physical I Improven	Nodel nents
	7
Applicati	ons

- Finite Element Discretization
- Adaptive Gridding
- Mobility Modeling
 - Proposed Mobility Model
 - Piezoresistance Model
- Strained-Si Simulations
 - N+/P Diode
 - MOSFET
- Summary

FEM Discretization Motivation

- Commonly-used Finite-Volume "Scharfetter-Gummel" method convergence problems
- Why? Particle strikes can generate carriers throughout the device -> rarely aligned with the grid

Device Simulator Discretization

 The set of coupled, time-dependent partial differential equations (PDEs) that govern semiconductor device behavior can be written as

$$\nabla \cdot (\varepsilon \nabla \psi) = -q \left(p - n + N_D^+ - N_A^- \right)$$
 1. Poisson Equation

$$\frac{dn}{dt} = \frac{1}{q} \nabla \cdot J_n - U_n$$
2. Electron Continuity Equation
$$\frac{dp}{dt} = -\frac{1}{q} \nabla \cdot J_p - U_p$$
3. Hole Continuity Equation

Discretization Method Comparison

Discretization - Node Randomization

50% 2-D FEQF **Finite-Volume** 45% [>]ercent difference in l_{ov} 2-D FVSG Gate Oxide 40% Error 3-D FEQF 🗯 3-D FVSG 35% 30% Channel 25% 20% 15% 10% Finite-5% Element 0%> 0.1 0.2 0.5 10 2 5 "Ideal" grid Grid Spacing (nm) **Baseline**

- Each mesh node randomly displaced by up to 40%
- The randomization of the grid created a large number of obtuse triangles (negative edge couplings)
- Results for both FEQF and FVSG methods were compared against equivalent structures with ideal meshes.

Quasi-Fermi Method – Transient Results

- FEQF -> fewer Newton steps to converge (simulation time savings)
- Transient convergence stability
 - Better handling of isotropic current flow.
 - Converges even if all charge is deposited at t=0

Adaptive Gridding - Concept

- Transient vs. DC simulations
 - Transient simulations require up to 100's of time steps

20

- Single Event simulations focus on transient behavior
- Adaptive gridding -> time benefit
 - Reduce number of nodes as transient progresses

Adaptive Gridding – Motivation

- Engineering
- Need ways to reduce transient simulation time
- Solution time increases rapidly based on the number of grid points 'nodes *n*' -> simulation time $\propto n^{1.75}$

Adaptive Gridding - Methodology

Engineering

Adaptive Gridding – SET Results

• Preliminary 2-D results (N+/P diode transient):

• Time benefit / accuracy tradeoff

Physical Model Improvements

FLOODS Simulation Tool Enhancements

Physical Model Improvements

- Finite Element Discretization
- Adaptive Gridding
- Mobility Modeling
 - Proposed Mobility Model
 - Piezoresistance Model
- Strained-Si Simulations
 - N+/P Diode
 - MOSFET
- Summary

Proposed Mobility Model (Silicon)

- Mobility model -> simulation results $J_n = -q \mu_n n \nabla \phi_n$
- Existing bulk models <u>not</u> accurate for single-event simulations (high-injection e-h pair conditions)

Parameter Model	Majority Carrier Mobility	Minority Carrier Mobility	Carrier-Carrier Scattering	Temperature Dependence
Proposed	+	+	+	+
Philips	+	+	-	+
Dorkel-Leturcq	-	n/a	+	+
Masetti	+	n/a	n/a	n/a
Arora	-	n/a	n/a	+
Caughey-Thomas	-	n/a	n/a	n/a
 Accurate model fitting to experimental data Loose approximation to experimental data n/a Not available in model 				

Qualitative Comparison of Commonly Used Bulk Silicon Mobility Models

Majority Carrier Mobility

Minority Carrier Mobility

Carrier-Carrier Scattering

Engineering

Conwell-Weisskopf carrier-carrier formulation proposed by Choo^[5]:

$$\mu_{cc} = \frac{2 \times 10^{17} T^{3/2}}{\sqrt{np}} \left[\ln \left(1 + 8.28 \times 10^8 T^2 (pn)^{-1/3} \right) \right]^{-1}$$

Simulation vs. Experiement

- Engineering
- Reverse-biased N⁺/P diode (TNS 2009 H. Park)
- Single-photon absorption

-laser energy = 13.5 pJ, radius = 6 µm

Note: Constant mobility μ_e =1417, μ_h =470.5 cm²/V·s

Simulation Results - Continued

- Reverse-biased Si N⁺/EPI/P⁺ diode
- Cylindrical Gaussian, LET = 20 MeV-cm²/mg

Simulation Results – Computation time

- The proposed model performed well in terms of computational efficiency
- Example: 3-D n+/p diode structure composed of ~6000 volume elements
- Matrix assembly and linear solution time:
 - 9.66 seconds per Newton step for the proposed model
 - 9.73 seconds per Newton step for the Philips model.

Piezoresistance mobility model

• Piezoresistivity is the change in electrical resistivity with mechanical stress

$$J_X(\sigma) \cong \left(1 + \frac{-\Delta \mu_{xx}}{\mu_{xx}}\right) J_X(0) = \left(1 + \pi_{11}\sigma_{xx}\right) J_X(0)$$

$$\uparrow$$
 current density mobility change

beam bending for n-type resistor

10⁻⁵ MPa ⁻¹

FLOODS Simulation Tool Enhancements

FLOODS Simulation Tool Enhancements

Physical Model	
Improvements	

Ap <mark>plicati</mark> ons			
		r	

- Finite Element Discretization
 - Adaptive Gridding
- Mobility Modeling
 - Proposed Mobility Model
 - Piezoresistance Model
- Strained-Si Simulations
 - N+/P Diode
 - MOSFET
- Summary

Current Transients under Uniaxial Stress

Experiment vs. 2-D Simulation results

6 6 1 GPa Compressive 5 -160 MPa }Compressive 500 MPa 5 160 MPa No Stress No Stress 160 MPa } Tensile 160 MPa 240 MPa Tensile 4 Δ 500 MPa Current (mA) Current (mA) 1 GPa 3 3 2 2 1 1 0 0 2 10 2 8 10 0 4 6 8 6 0 4 Time (ns) Time (ns)

2D simulation results are in agreement with experimental ones.

UNIVERSITY OF FLOI

Experiment (H. Park)

FLOODS 2-D Simulation

Strained-Si MOSFET

Simulation Work:

- Match curves for current transients under uniaxial stress following experiment (MOSFET – H. Park)
- Compared I-V characteristics for MOSFET devices with and without process induced strain for the same technology node

- Verify FLOOXS output
- Predictive SEU simulations

FLOOXS predicted stress profile [dyne/cm2] (Y component) ~1 GPa in channel region

Silicor

Hydrogen

- Simulate in FLOODS
 - Hydrogen Soak Anneals
 - Co-60 Radiation Exposure
 - Diffusion + Field Transport
 - Hole / Hydrogen / Vacancy / N_{it} Interactions in Oxides
- Include and Verify Reactions from DFT Results (Tuttle)

$$- V_{o} + h^{+} \Leftrightarrow V_{o}^{+}$$

$$- H_2 + V_0^+ \Leftrightarrow V_0 H + H^+$$

$$- e^- + V_o^+ \Leftrightarrow V_o$$

$$- V_{o}H + h^{+} \Leftrightarrow V_{o} + H^{+}$$

- Si-H + h⁺ ⇔ DB + H⁺
- DB + h⁺ \Leftrightarrow DB⁺
- $DB^+ + H_2 \Leftrightarrow Si-H + H^+$
- Match N_{it} Measurement (Vanderbilt)
- Sensitivity Analysis

TNS, TBP - Vanderbilt + UF

Summary

- Simulation tool enhancements (time & convergence):
 - Finite Element Discretization
 - Adaptive Gridding
- Physical model improvements (accuracy)
 - Proposed Mobility Model
 - Piezoresistance model
- Applications
 - Strained-Si Diode
 - Strained-Si MOSFET
 - Hydrogen

(TNS 2009)

(SISPAD 2009)

(NSREC 2010)

(TNS - under review)

(in progress)

THANKS!

