

Radiation Effects in SiGe Devices

Stan Phillips, John D. Cressler and Team

School of Electrical and Computer Engineering 777 Atlantic Drive, N.W., Georgia Institute of Technology Atlanta, GA 30332-0250 USA

cressler@ece.gatech.edu

Tel (404) 894-5161 / http://users.ece.gatech.edu/~cressler/

MURI Review: Vanderbilt University, Nashville, TN May 25, 2010

Outline

- SiGe HBT Technology & Extreme Environment Applications
- Total Dose Effects on SiGe HBTs
 - damage mechanisms, temperature dependence, scaling
- Single Event Studies of SiGe HBTs
 –TRIBICC vs. IBICC
- Hardening Methodologies & 3-D Modeling
 - "n-ring" incorporation
 - bulk vs. SOI platforms
 - inverse-mode cascode
- Mixed-mode Modeling and Circuit Exposures
 - BGR measurements
- Progress & Plans

SiGe Strain Engineering

Georgia Institute of Technology

SiGe Success Story

- Unconditionally Stable, UHV/CVD SiGe Epitaxial Base
- SiGe = SiGe HBT + Si CMOS for Highly Integrated Solutions
- 100% Si Manufacturing Compatibility
- **<u>Rapid</u>** Generation Evolution Incorporating C-SiGe Processes ٠

Growing Opportunities

- defense radar systems + automotive radar (e.g., @ 10 GHz, 77 GHz)

Georgialnsti

of Technolog

- automotive radar (24, 77 GHz)
- SiGe for Millimeter-wave Communications
 - Gb/s short range wireless links (60, 94 GHz)
 - cognitive radio / frequency-agile WLAN / 100 Gb Ethernet
- SiGe for THz Sensing, Imaging, and Communications
 - imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)
- SiGe for Analog Applications
 - the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)
- SiGe for Extreme Environments
 - extreme temperature (4K to 300C) + radiation (e.g. space systems)
- SiGe for Low Power Electronics
 - biomedical applications

EE Electronics

Space-Based Electronics

- Low-energy plasma (Van Allen)
- Galactic cosmic rays
- Solar flares
- Terrestrial cosmic rays
- Temperature -180°C to + 120°C

> High-Energy Physics Detectors

- ATLAS detector (LHC @ CERN)
- 10⁹ p-p collisions/s at several TeV
- 115 days/year over 10 years
- 1 MeV neutron fluence > 10¹⁴ n/cm²

<u>GOAL:</u> On-orbit error rate reduction via mission + system design, shielding, algorithms, and <u>hardening by design and process</u>

[1] http://see.msfc.nasa.gov/pf/pfimage/sphere8x6.jpg

[2] http://scipp.ucsc.edu/~sige/

Outline

- SiGe HBT Technology & Extreme Environment Applications
- Total Dose Effects on SiGe HBTs
 - damage mechanisms, temperature, scaling, in-beam
- Single Event Studies of SiGe HBTs
 –TRIBICC vs. IBICC
- Hardening Methodologies & 3-D Modeling
 - "n-ring" incorporation
 - bulk vs. SOI platforms
 - inverse-mode cascode
- Mixed-mode Modeling and Circuit Exposures
 - BGR measurements
- Progress & Plans

8

TID Damage Mechanisms Georgia Institute of Technology

Ionization Damage

Charged particles + photons

Primary Damage Source

- Oxide charging + interface traps
 EB Spacer & STI
- FETs: V_T shifts, leakage
- HBTs: I_B leakage, circuit bias shift

Secondary Damage Source

Displacement Damage

- Neutral + charged particles
- Vacancies + interstitials
- Dopant de-activation

IBM Technology Nodes

5AM & 7HP

8HP & 9T

Georgia Institute of Technology

TID Damage (Forward-mode) of Technology

- G/R traps at <u>EB-spacer</u> \rightarrow excess base current ($\Delta I_B/I_{B0}$)
- No degradation at circuit-relevant bias ($J_{\rm C}$ near peak $f_{\rm T}$)

• No change in f_T , f_{MAX} , r_{bb} , or $\tau_f \rightarrow$ lack of dopant deactivation

GeorgiaInstitute

of Technolog

Scaling Effects

- $\Delta I_B/I_{B0}$ has a near-linear (D^1) dose dependence
- Thinner BE-spacer + raised extrinsic base \rightarrow smaller $\Delta I_B/I_{B0}$
- Similar trends for $\Delta I_B/I_{B0}$ at $J_C=1 \ \mu A/\mu m^2$ and $V_{BE}=0.6 \ V$

Temperature Dependence of Technology

- Hole transport slowed at 77 K \rightarrow increase in self trapping
- Oxide trapped charge <u>increases</u> and interface traps <u>decrease</u>

SiGe HBTs are inherently tolerant to TID effects

- Minimal damage to <u>devices + circuits</u> (all sources, no ELDRS)
- Much more tolerant than comparable MOS technologies
- Damage dominated by low-injection SRH recombination
- No ac performance degradation across all SiGe generations
- TID tolerance is improved with technology scaling
- Reduced TID damage at cryogenic temperature
- SiGe HBTs function after 100+ Mrad exposure

Outline

- SiGe HBT Technology & Extreme Environment Applications
- Total Dose Effects on SiGe HBTs
 - damage mechanisms, temperature dependence, scaling
- Single Event Studies of SiGe HBTs
 -TRIBICC vs. IBICC
- Hardening Methodologies & 3-D Modeling
 - "n-ring" incorporation
 - bulk vs. SOI platforms
 - inverse-mode cascode
- Mixed-mode Modeling and Circuit Exposures
 - VCO measurements
 - BGR measurements
- Progress & Plans

Single Event Effects

Observed SEU Sensitivity in SiGe HBT Shift Registers

Goal..

♦ C-12 at 1.6 Gbps

■ F-19 at 1.6 Gbps

∆Si-28 at 1.6 Gbps

▲ CI-35 at 1.6 Gbps

□ Ni-58 at 1.6 Gbps

• Br-79 at 1.6 Gbps

50.0 60.0

1.6 Gb/sec

70.0

- low LET threshold + high saturated cross-section
- TMR works, other options?

 π

10.0

20.0

30.0

40.0

LET (MeV $x cm^2 / mg$)

P. Marshall et al., IEEE TNS, 47, p. 2669, 2000

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

0.0

heavy ion

Device Cross-section (cm²)

- Traditionally, IBICC is Performed for SEU
 - Measure of total nodal charge induced
 - Loss of detailed current transient
 - Less desirable for SiGe HBT logic
- Two Major Problems With IBICC Experiments
 - Rise time of charge sensitive preamp
 - Not compatible with bipolar signals
 - Possibility of charge cancellation

TRIBICC Measurements

- Directly Capture Induced Transients on Nodes
 - Very fast (~ps) with reasonable duration (~ns)
- Difficult Measurement to Perform
 - Packaging to minimize parasitics
 - Die on board solutions

Hardware Limitations

Georgia Institute of Technology

- Oscope bandwidth
 - 12.5 GHz
- Sampling rate
 - 50 GS/second

John D. Cressler, 5/25/10

TRIBICC Board Designs

- Board Design Dependent on Facility
 - Back-side laser vs. Front-side heavy-ion
- 50-ohm Microstrip Lines
 - Rogers 4003C dielectric
 - Characterized using HFSS

Simulations show functionality up to 30 GHz

Georgia Institute of Technology

Outline

- SiGe HBT Technology & Extreme Environment Applications
- Total Dose Effects on SiGe HBTs
 - damage mechanisms, temperature dependence, scaling
- Single Event Studies of SiGe HBTs
 –TRIBICC vs. IBICC
- Hardening Methodologies & 3-D Modeling
 - "n-ring" incorporation
 - bulk vs. SOI platforms
 - inverse-mode cascode
- Mixed-mode Modeling and Circuit Exposures
 BGR measurements
- Progress & Plans

- Competing N+ Junction External to Device
 - Shunt path for charge → reduce collector charge

NRING TRIBICC Results

TRIBICC Shows Strikingly Different Results

- NRING device has large increase in sensitive area
- Positive transients exist outside the deep trench

Georgia Institute of Technology **Exterior Transients**

Transients Induced Outside the Deep Trench Are Bipolar

3-D TCAD Simulations

Transient current waveform strongly dependent on bias

Georgialnsti

of Technolog

- Worst case for collector at lowest potential
 - Parasitic NPN turning on (nring-substrate-subcollector)
- Response broken into three regions

Circuit Implications

SOI vs. Bulk Platforms

SOI (Buried Oxide) vs. Bulk Platforms (NPNs)

- less charge deposited in the sensitive volume
- expected to decrease "diffusion charge"

Two Distinguishing Differences Between Platforms

(1) Reduction in sensitive area for SOI platform

45 um² → 7.5 um²

Collector Transient Peak Amplitude

(2) Significant reduction in transient duration

~ 1.5 ns → ~ 0.5 ns

- Similar response between NPN & PNP SOI devices
- Peak amplitudes are similar between platforms

Shift Register Simulations of Technology

- Modeled current pulses from transient data
- Inject transient currents in spectre simulations
 - Injected just prior to clock edge (maximizes sensitivity)
- Upsets seen only for register built with bulk devices

Inverse-Mode Cascode

De-couple sensitive junction from circuit output

- two transistors operating as one ("cascoded pair")
- top device inverse-mode, bottom device forward-mode
- need coupling C-Tap to rail for radiation tolerance

→ Inverse-Mode Cascode (IMC)

Cross-section of modified device

John D. Cressler, 5/25/10

Modeling & Measurement

IMC with C-Tap → Only Deposited Collector-base Charge

Georgialnstitute of Technology

- Collector Terminal Shielded from Bulk Charges
- For Simulations C-Tap Tied to DC Potential

Q: How do we dynamically bias the buried subcollector?

Biasing the C-Tap

- filter high frequency components
- will decrease speed of IMC

Spectre Simulations

- transient current injected at C-Tap
- varying capacitor values
- monitor collector transient

NET

Significant Transient Mitigation Without Large Decrease of Device Speed

Multi Gbit/s Enabled!

Simple device modification ✓No increase in device area ✓Trivial to integrate into digital logic

Measured Performance of 1st generation IMC shift register with CTAP capacitive loading

IMC SR w/cap > 1 Gbps

Ready for Broadbeam!

Outline

- SiGe HBT Technology & Extreme Environment Applications
- Total Dose Effects on SiGe HBTs
 - damage mechanisms, temperature dependence, scaling
- Single Event Studies of SiGe HBTs
 –TRIBICC vs. IBICC
- Hardening Methodologies & 3-D Modeling
 - "n-ring" incorporation
 - bulk vs. SOI platforms
 - inverse-mode cascode
- Mixed-mode Modeling and Circuit Exposures
 - BGR measurements
- Progress & Plans

- Approaches to simulating circuit SET:
 - 1. Inject analytical double exponential transient
 - 2. Inject computed 3D TCAD transients at "worst-case" biases
 - 3. Inject computed 3D TCAD transients at circuit nodal biases
 - 4. Full mixed-mode simulation (3D TCAD within Spectre)
- Under what conditions will these diverge?
 - Spectre-only simulations will not always capture real SET
 - Full mixed-mode can capture feedback effects
 - Depends on temp., bias, circuit topology, analog vs. RF...

Key: Need to validate simulations against measured data

SET in a SiGe BGR

- Bandgap voltage reference used inside a regulator circuit
- SiGe HBTs in BGR were bombarded by 36 MeV oxygen ions

SET in a SiGe BGR

- Transient response depends on the location of the strike
- Transients on Q2 in the PTAT branch show worst-case response

True Mixed-mode SET

- CFDRC MixCad (Spectre + 3D NanoTCAD) used to simulate SET
- SiGe HBT response in BGR not equal to standalone SiGe HBT
- Mixed-mode SET shows long output transient (as measured!)

Mixed-mode vs. Spectre

Schematic modified to emulate measurement setup

- Include all parasitic elements (bias tees, cabling, scope, etc..)

Transients at BGR output

Transients at oscilloscope

Georgia Institute of Technology

No-cost Extension Granted to 8/31/10

Continue Our Exploration of Device-level SiGe Hardening

- · Near-term broadbeam heavy ion experiment planned
 - Inverse-mode cascode shift registers
 - SiGe on SOI shift registers
- Characterization of self-heating effects in SiGe on SOI
 - new Agilent pulse-mode measurement system will support this
- Continue to investigate device-circuit interactions (mixed-signal)
- Continue to hone TCAD for addressing circuit response

Much Learned! Much to be Done Still!

Wish List – a follow-on MURI – hint, hint!

2009 Papers

[1] A. Appaswamy, S. Phillips, and J.D. Cressler, "Optimizing Inverse Mode SiGe HBTs for Immunity to Heavy-ion Induced, Single Event Upset," *IEEE Electron Device Letters*, vol. 30, pp. 511-513, 2009.

[2] A. Madan, S.D. Phillips, J.D. Cressler, P.W. Marshall, Q Liang, and G. Freeman, "Impact of Proton Irradiation on the RF Performance of 65 nm SOI CMOS Technology," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 1914-1919, 2009.

[3] J.A. Pellish, R.A. Reed, D. McMorrow, G. Vizkelethy, J. Baggio, O. Duhmael, S.D. Phillips, A.K. Sutton, R. Diestelhorst, J.D. Cressler, P.E. Dodd, M.L. Alles, R.D. Schrimpf, P.W. Marshall, and K.A. LaBel, "Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3078-3084, 2009.

[4] A. Madan, S.D. Phillips, E.P. Wilcox, J.D. Cressler, P.W. Marshall, P.F. Cheng, L. Del Castillo, Q. Liang, and G. Freeman, "The Enhanced Role of Shallow-Trench Isolation in Ionizing Radiation Damage of 65 nm RF-CMOS on SOI," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3056-3261, 2009.

[5] S.D. Phillips, T. Thrivikraman, A. Appaswamy, A.K. Sutton, J.D. Cressler, G. Vizkelethy, P.E. Dodd, R.A. Reed, and P.W. Marshall, "A Novel Device Architecture for SEU Mitigation: The Inverse-Mode Cascode SiGe HBT," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3393-3401, 2009.

[6] P. Cheng, J. Pellish, M.A. Carts, S. Philips, E. Wilcox, T. Thrivikraman, L. Najafizadeh, J.D. Cressler, and P.W. Marshall, "Re-examining TID Hardness Assurance Test Protocols for SiGe HBTs," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3318-3325, 2009.

[7] L. Najafizadeh, R.M. Diestelhorst, M. Bellini, S.D. Phillips, P.K. Saha, J.D. Cressler, G. Vizkelethy, and P.W. Marshall, "Single Event Transient Response of SiGe Voltage References and Its Impact on the Performance of Analog and Mixed-Signal Circuits," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3469-3476, 2009.

More 2009 Papers

[8] R.M. Diestelhorst, S. Phillips, A. Appaswamy, A.K. Sutton, J.D. Cressler, J.A. Pellish, R.A. Reed, G. Vizkelethy, P.W. Marshall, H. Gustat, B. Heinemann, G.G. Fischer, D. Knoll, and B. Tillack, "Using Junction Isolation to Single-Event Radiation Harden a 200 GHz SiGe:C HBT Technology Containing No Deep Trenches," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3402-3407, 2009.

[9] T. Zhang, X. Wei, G. Niu, J.D. Cressler, P.W. Marshall, and R.A. Reed, "A Mechanism versus SEU Impact Analysis of Collector Charge Collection in SiGe HBT Current Mode Logic," *IEEE Transactions on Nuclear Science*, vol. 56, pp. 3071-3077, 2009.

[10] M. Ullán^{b*}, J. Rice^a, G. Brooijmans^e, J. D. Cressler^h, D. Damiani^a, S. Díez^b, T. Gadfort^e, A. A. Grillo^a, R. Hackenburg^d, G. Hare^a, A. Jones^a, J. Kierstead^d, W. Kononenko^c, I. Mandić^g, F. Martinez-McKinney^a, J. Metcalfe^a, F. M. Newcomer^c, J. A. Parsons^e, S. Phillips^h, S. Rescia^d, H.F.-W. Sadrozinski^a, A. Seiden^a, E. Spencer^a, H. Spieler^f, A. K. Sutton^h, Y. Tazawa^c, M. Wilder^a, E. Wulf^e, "Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure," *Nuclear Instruments and Methods*, vol. 579, no. 2, 2009.

[11] S. Phillips, A. Sutton, M. Bellini, A. Appaswamy, J. Cressler, A. Grillo, G. Vizkelethy, P. Marshall, M. McCurdy, R. Reed, and P. Dodd, "Impact of Deep Trench Isolation on Advanced SiGe HBT Reliability in Radiation Environments," *Proceedings of the 2009 IEEE International Reliability Physics Symposium*, pp. 157-164, 2009.

[12] T.K. Thrivikraman, A. Appaswamy, S.D. Phillips, A.K. Sutton, and J.D. Cressler, "A Novel Device Structure using a Shared-Subcollector, Cascoded Inverse-Mode SiGe HBT for Enhanced Radiation Tolerance," *Proceedings of the 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting*, pp. 79-82, 2009.

[13] E.P. Wilcox, S.D. Phillips, J.D. Cressler, P.W. Marshall, M.A. Carts, L. Richmond, and B. Randall, "Non- TMR SEU-Hardening Techniques for SiGe HBT Shift Registers and Clock Buffers," *Proceedings of the 2009 IEEE Radiation Effects on Components and Systems (RADECS) Conference*, in press.

More 2009 Papers

[14] M. Bellini, S.D. Phillips, R.M. Diestelhorst, P. Cheng, J.D. Cressler, P.W. Marshall, M. Turowski, G. Avenier, A. Chantre, and P. Chevalier, "Novel Total Dose and Heavy-Ion Charge Collection Phenomena in a New SiGe HBT on Thin-Film SOI Technology," Chapter 4 in *Radiation Effects in Semiconductors: Devices, Circuits, and Systems*, K. Iniewski, Editor, 2009.

2010 Papers

[15] C. Ulaganathan, N. Nambiar, K. Cornett, J.A. Yager, R. Greenwell, B. Prothro, K. Tham, S. Chen, R.S. Broughton, G. Fu, B.J. Blalock, C.L. Britton, Jr., M.N. Ericson, H.A. Mantooth, M. Mojarradi, R.W. Berger, and J.D. Cressler, "A SiGe BiCMOS Instrumentation Channel for Extreme Environment Applications," *VLSI Design*, vol. 2010, Article ID 156829, pp. 1-12 (on-line), 2010.

[16] K.A. Moen and J.D. Cressler, "Measurement and Modeling of Carrier Transport Parameters Applicable to SiGe BiCMOS Technology Operating in Extreme Environments," *IEEE Transactions on Electron Devices*, vol. 57, pp. 551-561, 2010.

[17] R.M. Diestelhorst, S. Finn, L. Najafizadeh, D. Ma, P. Xi, C. Ulaganathan, J.D. Cressler, B. Blalock, F. Dai, A. Mantooth, L. Del Castillo, M. Mojarradi, and R. Berger, "A Monolithic, Wide-Temperature, Charge Amplification Channel for Piezoelectric Sensing Applications in Extreme Environments," *Proceedings of the 2010 IEEE Aerospace Conference*, pp. 1-9 (on CD ROM), 2010.

[18] C. Webber, J. Holmes, M. Francis, R. Berger, A. Mantooth, K. Cornett, B. Blalock, R. Greenwell, J.D. Cressler, R. Diestelhorst, and A. Authurs, "Event Driven Mixed-Signal Modeling Techniques for System-in-Package Functional Verification," *Proceedings of the 2010 IEEE Aerospace Conference*, pp. 1-15 (on CD ROM), 2010.

[19] K. A. Moen, S. D. Phillips, E. P. Wilcox, J. D. Cressler, H. Nayfeh, A. K. Sutton, J. H. Warner, S. P. Buchner, D. McMorrow, G. Vizkelethy, and P. Dodd, "Evaluating the Influence of Various Body-Contacting Schemes on Single Event Transients in 45 nm SOI CMOS," *IEEE Nuclear and Space Radiation Effects Conference* July 2010, accepted.

More 2010 Papers

[20] S. J. Horst, S. D. Phillips, P. Saha, J. D. Cressler, D. McMorrow, P. Marshall, H. Gustat, B. Heinemann, G. G. Fisher, D. Knoll, and B. Tillack, "An Investigation of Single-Event Transients in Complementary SiGe BiCMOS Resonant Tank Oscillators," *IEEE Nuclear and Space Radiation Effects Conference* July 2010, accepted.

[21] T.Thrivikraman, E. Wilcox, S. D. Phillips, J. D. Cressler G.Vizkelethy, P. Dodd, and P. Marshall, "Design of Digital Circuits Using Inverse-mode Cascode SiGe HBTs for Single Event Upset Mitigation," *IEEE Nuclear and Space Radiation Effects Conference* July 2010, accepted.

[22] E. P. Wilcox, S. D. Phillips, A.Madan, J. D. Cressler, G. Vizkelethy, P. W. Marshall, J. A. Babcock, K. Kruckmeyer, R. Eddy, G. Cestra, and B. Zhan, "Single Event Transient Hardness of a New Complementary (npn + pnp) SiGe HBT Technology on Thick-film SOI," *IEEE Nuclear and Space Radiation Effects Conference* July 2010, accepted.

[23] S. D. Phillips, K. A. Moen, L. Najafizadeh, R. Diestelhorst, A. K. Sutton, J. D. Cressler, G. Vizkelethy, P. Dodd, and P. W. Marshall, "A Comprehensive Understanding of the Efficacy of N-Ring SEE Hardening Methodologies in SiGe HBTs," *IEEE Nuclear and Space Radiation Effects Conference* July 2010, in review.