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Outline 

•  SiGe HBT Technology & Extreme Environment Applications

•  Total Dose Effects on SiGe HBTs


–  damage mechanisms, temperature dependence, scaling

•  Single Event Studies of SiGe HBTs


– TRIBICC vs. IBICC

•  Hardening Methodologies & 3-D Modeling


–  “n-ring” incorporation

–  bulk vs. SOI platforms

–  inverse-mode cascode


•  Mixed-mode Modeling and Circuit Exposures

–  BGR measurements


•  Progress & Plans
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SiGe Strain Engineering 

The Bright Idea!

Practice Bandgap Engineering    
 
 
 
 
 
 
 
 
    

 
 … but do it in Silicon! 
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SiGe Success Story 

• 
Unconditionally Stable, UHV/CVD SiGe Epitaxial Base

•  SiGe = SiGe HBT + Si CMOS for Highly Integrated Solutions

• 
100% Si Manufacturing Compatibility

• 
Rapid Generation Evolution Incorporating C-SiGe Processes


Ge(x)

50 nm SiGe = III-V Speed + Si Manufacturing


                       Win-Win!


1st


2nd


3rd


4th
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•  SiGe Radar Systems

−  defense radar systems + automotive radar (e.g., @ 10 GHz, 77 GHz)

−  automotive radar (24, 77 GHz)


•  SiGe for Millimeter-wave Communications

−  Gb/s short range wireless links (60, 94 GHz)

−  cognitive radio / frequency-agile WLAN / 100 Gb Ethernet


•  SiGe for THz Sensing, Imaging, and Communications

−  imaging / radar systems, diagnostics, comm (94 GHz, 100-300 GHz)


•  SiGe for Analog Applications

−  the emerging role of C-SiGe (npn + pnp) + data conversion (ADC limits)


•  SiGe for Extreme Environments 
−  extreme temperature (4K to 300C) + radiation (e.g. space systems)


•  SiGe for Low Power Electronics

−  biomedical applications


Growing Opportunities 
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GOAL: On-orbit error rate reduction via mission + system design,

             shielding, algorithms, and hardening by design and process 


[1] http://see.msfc.nasa.gov/pf/pfimage/sphere8x6.jpg 

  Space-Based Electronics

  Low-energy plasma (Van Allen)

  Galactic cosmic rays

  Solar flares

  Terrestrial cosmic rays

  Temperature -180°C to + 120°C


  High-Energy Physics Detectors

  ATLAS detector (LHC @ CERN)

  109 p-p collisions/s at several TeV

  115 days/year over 10 years

  1 MeV neutron fluence > 1014 n/cm2


[2] http://scipp.ucsc.edu/~sige/ 

EE Electronics 
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Outline 

•  SiGe HBT Technology & Extreme Environment Applications

•  Total Dose Effects on SiGe HBTs


–  damage mechanisms, temperature, scaling, in-beam

•  Single Event Studies of SiGe HBTs


– TRIBICC vs. IBICC

•  Hardening Methodologies & 3-D Modeling


–  “n-ring” incorporation

–  bulk vs. SOI platforms

–  inverse-mode cascode


•  Mixed-mode Modeling and Circuit Exposures

–  BGR measurements


•  Progress & Plans
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  Ionization Damage

  Charged particles + photons

  Oxide charging + interface traps


-  EB Spacer & STI

  FETs: VT shifts, leakage

  HBTs: IB leakage, circuit bias shift


  Displacement Damage

  Neutral + charged particles

  Vacancies + interstitials

  Dopant de-activation


Primary Damage Source


Secondary Damage Source


TID Damage Mechanisms 
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[5] D.C. Ahlgren et. al., in Proc.  IEEE  BCTM pp. 143-46, 2001. [6] B. Jagannathan et. al., IEEE EDL , vol. 23, no.  5, pp. 258-60, May 2002. 

Technology Node
 Peak fT (GHz)
 Peak fMAX (GHz)
 BVCEO (V)
 WE (µm)

1st-generation (5AM) 50 70 3.3 0.5 

2nd-generation (7HP)  120 100 2.5 0.2 

3rd-generation (8HP) 207 285 1.7 0.12 

4th-generation (9T) 350 307 1.2 0.12 

 5AM & 7HP  8HP & 9T 

IBM Technology Nodes 
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  G/R traps at EB-spacer  excess base current (ΔIB/IB0)

  No degradation at circuit-relevant bias (JC near peak fT)


 Forward Mode 

Forward-Mode ΔIB/IB0 samples the 

EB-spacer oxide


TID Damage (Forward-mode) 



John D. Cressler, 5/25/10 11 

  No change in fT, fMAX, rbb, or τf  lack of dopant deactivation


ac Performance Metrics 



John D. Cressler, 5/25/10 12 

  ΔIB/IB0 has a near-linear (D1) dose dependence 

  Thinner BE-spacer + raised extrinsic base  smaller ΔIB/IB0

  Similar trends for ΔIB/IB0 at JC=1 µA/µm2 and VBE=0.6 V


5AM & 7HP 

8HP & 9T


Scaling Effects 
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  Hole transport slowed at 77 K  increase in self trapping

  Oxide trapped charge increases and interface traps decrease


Temperature Dependence 
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 SiGe HBTs are inherently tolerant to TID effects


  Minimal damage to devices + circuits (all sources, no ELDRS)

  Much more tolerant than comparable MOS technologies

  Damage dominated by low-injection SRH recombination

  No ac performance degradation across all SiGe generations

  TID tolerance is improved with technology scaling

  Reduced TID damage at cryogenic temperature

  SiGe HBTs function after 100+ Mrad exposure


SiGe TID Summary 

As Fabricated!
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Outline 

•  SiGe HBT Technology & Extreme Environment Applications

•  Total Dose Effects on SiGe HBTs


–  damage mechanisms, temperature dependence, scaling

•  Single Event Studies of SiGe HBTs


– TRIBICC vs. IBICC

•  Hardening Methodologies & 3-D Modeling


–  “n-ring” incorporation

–  bulk vs. SOI platforms

–  inverse-mode cascode


•  Mixed-mode Modeling and Circuit Exposures

–  VCO measurements

–  BGR measurements


•  Progress & Plans
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16 

• Observed SEU Sensitivity in SiGe HBT Shift Registers


- low LET threshold + high saturated cross-section


   - TMR works, other options?


P. Marshall et al., IEEE TNS, 47, p. 2669, 2000  


Single Event Effects 

Goal…


1.6 Gb/sec
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SEE Experiments


•  Traditionally, IBICC is Performed for SEU

–  Measure of total nodal charge induced

–  Loss of detailed current transient

–  Less desirable for SiGe HBT logic


•  Two Major Problems With IBICC Experiments

–  Rise time of charge sensitive preamp

–  Not compatible with bipolar signals

▪   Possibility of charge cancellation


Complete 
Cancellation
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TRIBICC Measurements


•  Directly Capture Induced Transients on Nodes

–  Very fast (~ps) with reasonable duration (~ns)


•  Difficult Measurement to Perform

–  Packaging to minimize parasitics


–  Die on board solutions


•  Hardware Limitations

–  Oscope bandwidth

 12.5 GHz


–  Sampling rate

 50 GS/second
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TRIBICC Board Designs


•  Board Design Dependent on Facility

- Back-side laser vs. Front-side heavy-ion


•  50-ohm Microstrip Lines

- Rogers 4003C dielectric

- Characterized using HFSS


Simulations show 
functionality up to 30 GHz
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Outline 

•  SiGe HBT Technology & Extreme Environment Applications

•  Total Dose Effects on SiGe HBTs


–  damage mechanisms, temperature dependence, scaling

•  Single Event Studies of SiGe HBTs


– TRIBICC vs. IBICC

•  Hardening Methodologies & 3-D Modeling


–  “n-ring” incorporation

–  bulk vs. SOI platforms

–  inverse-mode cascode


•  Mixed-mode Modeling and Circuit Exposures

–  BGR measurements


•  Progress & Plans
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N-Ring SiGe HBTs


•  Competing N+ Junction External to Device

•  Shunt path for charge  reduce collector charge


Standard HBT
 NRING HBT


SiGe SiGe 
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NRING IBICC Results


•  Charge Collection Contours


- significant reduction in total charge collection (peak and sensitive area)


Standard HBT
 NRING HBT


Q: Are the IBICC results real?
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NRING TRIBICC Results


•  TRIBICC Shows Strikingly Different Results


- NRING device has large increase in sensitive area


- Positive transients exist outside the deep trench


Standard HBT
 NRING HBT


Collector Transient Peak Amplitude
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Exterior Transients


•  Transients Induced Outside the Deep Trench Are Bipolar


- Integrating will cause cancellation
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3-D TCAD Simulations


•  Transient current waveform strongly dependent on bias

− Worst case for collector at lowest potential


− Parasitic NPN turning on (nring-substrate-subcollector)

− Response broken into three regions 


VC, VNR = 3 V, all others 0 V
VNR = 3 V, all others 0 V
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Circuit Implications


•  Digital vs. Analog

–  Application specific answer!




John D. Cressler, 5/25/10 27 

SOI vs. Bulk Platforms


SiGe SiGe 

•  SOI (Buried Oxide) vs. Bulk Platforms (NPNs)


- less charge deposited in the sensitive volume


- expected to decrease “diffusion charge”
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•  Two Distinguishing Differences Between Platforms


(1) Reduction in sensitive area for SOI platform


Collector Transient Peak Amplitude


Microbeam Results


45 um2    7.5 um2  


Bulk
 SOI
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36-MeV Oxygen Ion 
VC = +3V 
SOI AE = .25x10 µm2 

Bulk AE = .5x2.5 µm2 

36-MeV Oxygen Ion 
VC = +3V 
SOI AE = .25x10 µm2 

(2) Significant reduction in transient duration


•  Similar response between NPN & PNP SOI devices

•  Peak amplitudes are similar between platforms


TRIBICC Measurements


~ 1.5 ns   ~ 0.5 ns  
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•  Modeled current pulses from transient data

•  Inject transient currents in spectre simulations


–  Injected just prior to clock edge (maximizes sensitivity)

•  Upsets seen only for register built with bulk devices


Shift Register Simulations




John D. Cressler, 5/25/10 31 

Cross-section of modified device


De-couple sensitive junction from circuit output

•  two transistors operating as one (“cascoded pair”)

•  top device inverse-mode, bottom device forward-mode 
•  need coupling C-Tap to rail for radiation tolerance 
 Inverse-Mode Cascode (IMC) 

Industry
 Our Solution


Inverse-Mode Cascode
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Modeling & Measurement


•   IMC with C-Tap  Only Deposited Collector-base Charge

•  Collector Terminal Shielded from Bulk Charges

•  For Simulations C-Tap Tied to DC Potential


Q: How do we dynamically bias the buried subcollector? 
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Biasing the C-Tap


Solution: Capacitive Coupling

•  filter high frequency components

•  will decrease speed of IMC


•  Spectre Simulations


- transient current injected at C-Tap


 
- varying capacitor values


- monitor collector transient


NET

Significant Transient 


Mitigation Without Large

Decrease of Device Speed 


Multi Gbit/s Enabled!


100 fF 
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Simple device modification 
 No increase in device area  
 Trivial to integrate into digital logic 

Measured Performance of 1st 
generation IMC shift register 
with CTAP capacitive loading


IMC SR w/cap  > 1 Gbps


Digital Circuits


Ready for Broadbeam! 
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Outline 

•  SiGe HBT Technology & Extreme Environment Applications

•  Total Dose Effects on SiGe HBTs


–  damage mechanisms, temperature dependence, scaling

•  Single Event Studies of SiGe HBTs


– TRIBICC vs. IBICC

•  Hardening Methodologies & 3-D Modeling


–  “n-ring” incorporation

–  bulk vs. SOI platforms

–  inverse-mode cascode


•  Mixed-mode Modeling and Circuit Exposures

–  BGR measurements


•  Progress & Plans
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Circuit SET Modeling 

•  Approaches to simulating circuit SET:

1.  Inject analytical double exponential transient 

2.  Inject computed 3D TCAD transients at “worst-case” biases

3.  Inject computed 3D TCAD transients at circuit nodal biases

4.  Full mixed-mode simulation (3D TCAD within Spectre)


•  Under what conditions will these diverge?

‒  Spectre-only simulations will not always capture real SET

‒  Full mixed-mode can capture feedback effects

‒  Depends on temp., bias, circuit topology, analog vs. RF…


    Key: Need to validate simulations against 
measured data
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SET in a SiGe BGR 
• Bandgap voltage reference used inside a regulator circuit 
• SiGe HBTs in BGR were bombarded by 36 MeV oxygen ions 

Experiment 
Setup 

BGR 
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SET in a SiGe BGR 

Q1 

• Transient response depends on the location of the strike 
• Transients on Q2 in the PTAT branch show worst-case response 
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True Mixed-mode SET 
•  CFDRC MixCad (Spectre + 3D NanoTCAD) used to simulate SET  
•  SiGe HBT response in BGR not equal to standalone SiGe HBT 
•  Mixed-mode SET shows long output transient (as measured!) 
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Mixed-mode vs. Spectre  
•  Schematic modified to emulate measurement setup


-  Include all parasitic elements (bias tees, cabling, scope, etc..)


Transients at BGR output
 Transients at oscilloscope
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Progress & Plans 

Continue Our Exploration of Device-level SiGe Hardening

•  Near-term broadbeam heavy ion experiment planned


-  Inverse-mode cascode shift registers

-  SiGe on SOI shift registers


•  Characterization of self-heating effects in SiGe on SOI 

- new Agilent pulse-mode measurement system will support this


•  Continue to investigate device-circuit interactions (mixed-signal)

•  Continue to hone TCAD for addressing circuit response 


No-cost Extension Granted to 8/31/10


Much Learned! ….. Much to be Done Still! 

Wish List – a follow-on MURI – hint, hint!
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