

Modeling the Effects of Hydrogen on Dose Rate Response

Jie Chen¹, Hugh Barnaby¹, Bert Vermeire¹ Ron Pease², Philippe Adell³

¹Electrical Engineering, ASU, Tempe, AZ ²RLP Research, Las Lunas, NM ³JPL, Pasadena, CA

MURI 2009 1

Acknowledgements

Jet Propulsion Laboratory

Topics

Effect of hydrogen on dose rate sensitivity

- ELDRS mechanism and modeling
- Results of TID exposure at different dose rates in H environment.
- Modeling the effect of H on ELDRS.

Using hydrogen as an accelerated test method

 Latest experimental results showing hydrogen can be used to bound LDR response

ELDRS in Bipolar Devices

Enhanced Low Dose Rate Sensitivity in bipolar devices

After Witczak et al, IEEE Trans. Nucl. Sci., 1998

Some Key ELDRS Processes

ELDRS really is: Reduced High Dose Rate Sensitivity

High space charge induced localized E-field @ HDR

 Increases recombination of n⁻/p⁺

⊕↔•

 Increases probability of trapped n⁻, recombining with free holes

 Increases probability of trapped p⁺ annihilation by n⁻

Modeling ELDRS

Using COMSOL Multiphysics FEM Simulator at ASU, the following model equations can be simultaneously solved to model dose rate response.

Electrostatics:
$$\frac{\partial E_{ox}}{\partial x} = \frac{q}{\epsilon_{ox}} (p^+ - n^- + N_{H^+})$$

Carrier Drift/diffusion, reaction, recombination:

$$\frac{\partial \boldsymbol{p}^{+}}{\partial \boldsymbol{t}} = \boldsymbol{g}_{o} \boldsymbol{f}_{y} \dot{\boldsymbol{R}}_{D} - \boldsymbol{r}_{H^{+}} \boldsymbol{p}^{+} \boldsymbol{N}_{DH} - \sigma_{rcomb} \boldsymbol{n}^{-} \boldsymbol{p}^{+} - \frac{\partial \boldsymbol{f}_{\boldsymbol{p}^{+}}}{\partial \boldsymbol{x}}$$

$$\frac{\partial \mathbf{n}^{-}}{\partial \mathbf{t}} = \mathbf{g}_{o} \mathbf{f}_{y} \dot{\mathbf{R}}_{D} - \sigma_{rcomb} \mathbf{n}^{-} \mathbf{p}^{+} - \frac{\partial \mathbf{f}_{n^{-}}}{\partial \mathbf{x}}$$

$$\sigma_{rcomb} = constant$$

Proton drift/diffusion, reaction:

$$\frac{\partial \mathbf{N}_{H^{+}}}{\partial t} = \mathbf{r}_{H^{+}} \mathbf{p}^{+} \mathbf{N}_{DH} - \frac{\partial \mathbf{f}_{H^{+}}}{\partial \mathbf{X}}$$

$$\frac{\partial \mathbf{N}_{it}}{\partial t} = \mathbf{r}_{\mathrm{S}i^{+}} \mathbf{N}_{\mathrm{H}^{+}} (\mathbf{N}_{\mathrm{S}iH})$$

Modeling ELDRS

ELDRS mechanism simulation

- Reduced hole yield at HDR due to increased n⁻/p⁺ recombination caused by space charge.
- Hole yield directly affects H⁺ and N_{it} generation.

Hole yield dependence on dose rate

Modeling ELDRS

- Hole flux is affected by applied E-field
- Appied E-field directly affects ELDRS response

After Witczak et al, IEEE Trans. Nucl. Sci., 1998

Presenting at NSREC 2009

Effect of H₂ on ELDRS

Latest ELDRS/ H₂ Experiment on bipolar parts

 Gated bipolar test structures (GLPNP) with P-glass passivation (ASU).

Presenting at NSREC 2009

Effect of H₂ on ELDRS

Latest ELDRS/ H₂ Experiment on bipolar parts

 LM193, linear bipolar dual comparator, performed at JPL.

Effect of H₂ on radiation response

- GLPNPs exposed to 30krad
 Co-60 gamma rays at 20rad/s
- Enhanced buildup in N_{it} as H2 concentration increases due to H₂ cracking reactions

$$H_2 + 2D \rightarrow 2DH$$

or
 $p^+ + H_2 + D \rightarrow DH + H^+$

After Chen et al, IEEE Trans. Nucl. Sci., 2007

Impact of Hydrogen on ELDRS

ELDRS response also changes with H₂

$$p^+ + H_2 + D \rightarrow DH + H^+ \bigstar$$

 $p^+ + DH \rightarrow D + H^+ \bigstar$

With high hydrogen content these are competing with

$$n^{-} + D^{+} \rightarrow D$$

 $p^{+} + n^{-} \rightarrow X$
 $p^{+} + D \rightarrow D^{+}$
 p^{+} remain in oxide

Shift in dose rate curve due to H_2 :

Modeling ELDRS with Hydrogen

$$\frac{\partial \mathbf{E}_{ox}}{\partial \mathbf{x}} = \frac{\mathbf{q}}{\varepsilon_{ox}} (\mathbf{p}^{+} - \mathbf{n}^{-} + \mathbf{N}_{H^{+}}) \qquad \frac{\partial \mathbf{p}^{+}}{\partial t} = \mathbf{g}_{o} \mathbf{f}_{y} \, \dot{\mathbf{R}}_{D} - \mathbf{r}_{H^{+}} \mathbf{p}^{+} \mathbf{N}_{DH} - \sigma_{rcomb} \mathbf{n}^{-} \mathbf{p}^{+} - \frac{\partial \mathbf{f}_{p^{+}}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{N}_{H^{+}}}{\partial t} = \mathbf{r}_{H^{+}} \mathbf{p}^{+} \mathbf{N}_{DH} - \frac{\partial \mathbf{f}_{H^{+}}}{\partial \mathbf{x}} \\
\frac{\partial \mathbf{n}^{-}}{\partial t} = \mathbf{g}_{o} \mathbf{f}_{y} \, \dot{\mathbf{R}}_{D} - \sigma_{rcomb} \mathbf{n}^{-} \mathbf{p}^{+} - \frac{\partial \mathbf{f}_{n^{-}}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{N}_{it}}{\partial t} = \mathbf{r}_{Si^{+}} \mathbf{N}_{H^{+}} (\mathbf{N}_{SiH})$$

- Modeling change of N_{DH} as an increasing function of ambient H₂ concentration.
- σ_{recomb} stays constant as H₂ increases.

Modeling ELDRS with Hydrogen

$$\frac{\partial \mathbf{E}_{ox}}{\partial \mathbf{x}} = \frac{\mathbf{q}}{\varepsilon_{ox}} (\mathbf{p}^{+} - \mathbf{n}^{-} + \mathbf{N}_{H^{+}}) \qquad \frac{\partial \mathbf{p}^{+}}{\partial \mathbf{t}} = \mathbf{g}_{o} \mathbf{f}_{y} \, \mathbf{R}_{D}^{-} - \mathbf{r}_{H^{+}} \mathbf{p}^{+} \mathbf{N}_{DH} - \sigma_{rcomb} \mathbf{n}^{-} \mathbf{p}^{+} - \frac{\partial \mathbf{f}_{p^{+}}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{N}_{H^{+}}}{\partial \mathbf{t}} = \mathbf{r}_{H^{+}} \mathbf{p}^{+} \mathbf{N}_{DH} - \frac{\partial \mathbf{f}_{H^{+}}}{\partial \mathbf{x}} \\
\frac{\partial \mathbf{n}^{-}}{\partial \mathbf{t}} = \mathbf{g}_{o} \mathbf{f}_{y} \, \mathbf{R}_{D}^{-} - \sigma_{rcomb} \mathbf{n}^{-} \mathbf{p}^{+} - \frac{\partial \mathbf{f}_{n^{-}}}{\partial \mathbf{x}} \qquad \frac{\partial \mathbf{N}_{it}}{\partial \mathbf{t}} = \mathbf{r}_{Si^{+}} \mathbf{N}_{H^{+}} (\mathbf{N}_{SiH})$$

- Modeling change of N_{DH} as an increasing function of ambient H₂ concentration.
- σ_{recomb} decreases as H_2 increases.

Charge Yield Experiment

Hole continuity equation in ELDRS model

$$\frac{\partial \boldsymbol{p}^{+}}{\partial \boldsymbol{t}} = \boldsymbol{g}_{o} \boldsymbol{f}_{y} \dot{\boldsymbol{R}}_{D} - \boldsymbol{r}_{H^{+}} \boldsymbol{p}^{+} \boldsymbol{N}_{DH} - \boldsymbol{\sigma}_{rcomb} \boldsymbol{n}^{-} \boldsymbol{p}^{+} - \frac{\partial \boldsymbol{f}_{\boldsymbol{p}^{+}}}{\partial \boldsymbol{x}}$$

 $\sigma_{rcomb} \propto f(r_{np}, \eta)$

 r_{np} = rate constant

 $\eta = efficiency$

After Groves & Greenham, Physical Review B, 2008

If the <u>increase</u> of hydrogen concentration <u>decreases</u> the recombination efficiency, then σ_{recomb} is decreased:

$$H \uparrow \Rightarrow \sigma_{rcomb} \downarrow$$

This lead to shift in transition dose rate in device dose rate response.

<u>Charge yield measurement</u> can be performed under different hydrogen ambients to provide proof.

Using a pulsed proton beam (@ASU) to generate carriers and measure hole yield.

Accelerated ELDRS test in H₂

- Testing parts in 100% H₂ at HDR was suggested as possible accelerated test to screen parts for worst case LDR response
 - TNS December 2008, Pease, et al, p.3169
 - RADECS 2008, Pease, et al, Invited paper on ELDRS
- Paper accepted at NSREC09 to validate method
 - NSREC09, E-3, "Irradiation with molecular hydrogen as an accelerated hardness assurance test method", P. C. Adell, et al
 - Data on NSC LM193, Linear Tech LT1019 and Intersil HSYE-117RH
 - Planned data on AD590, OP42 and LT27

JPL data- LT1019 voltage reference

JPL data- 117 regulator

Summary

- Effect of hydrogen on ELDRS
 - Hole yield is dependent on dose rate
 - High hydrogen concentration in low-field oxide shifts the ELDRS response of bipolar devices.
 - Model simulations suggest e/h recombination coefficient, σ_{recomb} is a function of hydrogen concentration.
 - Changing σ_{recomb} can produce similar shifts in dose rate response observed in the data.
- Accelerated testing using hydrogen
 - Recent experiments on bipolar parts strongly suggest that hydrogen can be used during HDR testing to bound low dose rate responses of bipolar parts.

