

Effects of hydrogen on device total ionizing dose and dose rate response

Jie Chen¹, Hugh Barnaby¹, Bert Vermeire¹ Ron Pease², Philippe Adell³, Harold Hjarmalson⁴

> ¹Electrical Engineering, ASU, Tempe, Az ²RLP Research, Las Lunas, NM ³JPL, Pasadena, CA ⁴Sandia National Labs, Albuquerque, NM

MURI 2008

Acknowledgements

NASA Electronic Parts and Packaging Program (NEPP)

Jet Propulsion Laboratory

Topics

Effect of hydrogen on dose rate sensitivity

- ELDRS mechanism and modeling
- Results of TID exposure at different dose rates in H environment
- Modeling the effect of H on ELDRS

Effects of hydrogen on TID and annealing response (Covered in Appendix)

- Previous TID experiment in hydrogen
- Un-biased annealing in air/hydrogen

ELDRS in bipolar devices

 Enhanced Low Dose Rate Sensitivity in bipolar devices

After Witczak et al, IEEE Trans. Nucl. Sci., 1998

Existing ELDRS Models

MURI 2008

Some Key ELDRS Processes

ELDRS really is: Reduced High Dose Rate Sensitivity

High space charge induced localized E-field @ HDR

- Increases recombination of n⁻/p⁺
- Increases probability of n⁻ trapping, recombining with free holes

 Increases probability of trapped p⁺ annihilation by n⁻

Modeling ELDRS

ELDRS mechanism simulation

- Using 2D
 COMSOL FES
 @ASU
- Reduced hole yield at HDR due to increased n⁻/p⁺ recombination caused by space charge
- Hole yield directly affects H⁺ and N_{it} generation

Modeling ELDRS

- Hole flux is affected by applied E-field
- Appied E-field directly affects ELDRS response

MURI 2008

Effect of H₂ on ELDRS

ELDRS/H₂ Experiment on bipolar parts

 Gated bipolar test structures (GLPNP) with P-glass passivation (ASU).

Presenting at NSREC 2008

Effect of H₂ on ELDRS

ELDRS/H₂ Experiment on bipolar parts (LM193)

Presenting at NSREC 2008

Effect of H₂ on radiation response

- GLPNPs exposed to 30krad
 Co-60 gamma rays at 20rad/s
- Enhanced buildup in N_{it} as H2 concentration increases due to H₂ cracking reactions

 $H_2 + 2D \rightarrow 2DH$

After Chen et al, IEEE Trans. Nucl. Sci., 2007

Impact of hydrogen on ELDRS

ELDRS response also changes with H₂

Modeling ELDRS with Hydrogen

Comsol 2D ELDRS simulation with 4 different H concentrations

MURI 2008

Ongoing experiments

- ELDRS Experiment is planned for April and May, 08
 - All test devices are P-glass passivated devices showing ELDRS
 - Devices will have either air and 100% H₂ in radiation environment
 - Data points will be taken at 0.1 rad/s, 150 rad/s, and 20 rad/s

- Effect of hydrogen on ELDRS
 - Hole yield is dependent on dose rate
 - High hydrogen concentration in low-field oxide shifts the ELDRS response of bipolar devices.
 - Preliminary simulations shows good qualitative response.
- Annealing experiments after TID exposure in H₂
 - No signification annealing of N_{it}.
 - Large differences in N_{ot} annealing slopes.
 - Differences in annealing slope maybe due to spatial distribution of H-induced trapped charge (p⁺ or H⁺).

- Isochronal annealing and study the effect of Efield and spatial distribution of H-induced trapped charge.
- REOS (Sandia) and COMSOL(ASU) modeling of ELDRS and TID response.
- FTIR and ERD (Elastic Recoil Detection) measurements on H-defect properties in samples irradiated in H_{2.}

Appendix

Effects of hydrogen on TID and annealing response

- Previous TID experiment in hydrogen
- Un-biased annealing in air/hydrogen
- Biased annealing in air

Enhanced TID degradation in H₂

- BJTs exposed to 30krad Co-60 gamma rays
- Enhanced buildup in N_{it}
- Enhanced buildup in N_{ot}

After Chen et al, IEEE Trans. Nucl. Sci., 2007

Annealing in air

- Anneal with no bias
- N_{ot} anneal slope greater for higher H₂
- Annealing experiments on N_{it} showed little change at room temperature

Annealing in 100% H₂

- Anneal with no bias
- Sudden drop of N_{ot} corresponds w/ increase of N_{it}

• *
$$H_2 + D^+ \rightarrow DH + H^+$$

* After Mrstik & Rendell, IEEE Trans. Nucl. Sci., 1991

Brief Summary of Results

Mechanism of N_{ot} Annealing

$$\frac{\partial \rho_{ot}(x,t)}{\partial t} = -g(x,t)\rho_{ot}(x,t)$$

$$\rho_{ot}(x,t) = \rho_{ot,0}(x)e^{-\alpha t e^{-\beta x}}$$

*If assuming uniform spatial distribution near the Si/SiO*₂ *interface and low E-fields in the oxide:*

$$\Delta N_{ot}(t) \approx \frac{-q\rho_{ot,0}}{\beta} \ln(\alpha t)$$

Biased annealing results

Biased annealing behavior of rad-induced N_{ot}

- With applied bias, change in annealing rate.
- Usually the tunneling equation is solved numerically with a E-field dependent tunneling probability:

$$g(x,t) = \alpha(E) \exp(-Z(E))$$

After Mclean, TNS, 1976