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Topics
Effect of hydrogen on dose rate sensitivity

• ELDRS mechanism and modeling
• Results of TID exposure at different dose rates in

H environment
• Modeling the effect of H on ELDRS

Effects of hydrogen on TID and annealing response
(Covered in Appendix)

• Previous TID experiment in hydrogen
• Un-biased annealing in air/hydrogen
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ELDRS in bipolar devices
• Enhanced Low Dose Rate Sensitivity in bipolar

devices

After Witczak et al, 
IEEE Trans. Nucl. Sci., 1998
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Existing ELDRS Models

Space Charge 
Model

Trapped e- 
Model

H2 cracking 
model

Other competing 
reaction 
models

After Rashkeev, Cirba,
Fleetwood, Schrimpf,
Witczak, Michez,
Pantelides, TNS 2002.

After Boch, Saigné,
Schrimpf, Vaillé,
Dusseau, Lorfèvre,
TNS 2006.

After Hjalmarson,
Pease, Witczak,
Shaneyfelt, Schwank,
Edwards, Hembree,
Mattsson, TNS 2003.

?

After Freitag and Brown,
TNS 1997.
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Some Key ELDRS Processes
ELDRS really is: Reduced High Dose Rate Sensitivity

Low E-field oxide

Si-substrate
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Electrons (free or trapped)
Holes (free or trapped)

High space charge induced
localized E-field @ HDR

• Increases recombination of
n-/p+

• Increases probability of n-

trapping, recombining with
free holes

• Increases probability of
trapped p+ annihilation by n-
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Modeling ELDRS
ELDRS mechanism simulation
• Using 2D

COMSOL FES
@ASU

• Reduced hole
yield at HDR due
to increased n-/p+

recombination
caused by space
charge

• Hole yield directly
affects H+ and Nit
generation

Hole yield dependence on dose rate
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Modeling ELDRS
• Hole flux is affected by applied E-field
• Appied E-field directly affects ELDRS response
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Effect of H2 on ELDRS
ELDRS/H2
Experiment on
bipolar parts

• Gated bipolar
test structures
(GLPNP) with
P-glass
passivation
(ASU).
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Effect of H2 on ELDRS
ELDRS/H2 Experiment on bipolar parts (LM193)
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Effect of H2 on radiation response

• GLPNPs exposed to
30krad
Co-60 gamma rays at
20rad/s

• Enhanced buildup in Nit
as H2 concentration
increases due to H2
cracking reactions

After Chen et al,
IEEE Trans. Nucl.

Sci., 2007
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Impact of hydrogen on ELDRS
ELDRS response also changes with H2

@ HDR

H2 + 2D  2DH
p+ + DH  D + H+

Competing with

n- + D+  D
p+ + n-  X
p+ + D  D+

p+ leaving oxide

Shift in dose rate curve due to H2:
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Ongoing experiments
• ELDRS Experiment is planned for April and May, 08

• All test devices are P-glass passivated devices showing ELDRS
• Devices will have either air and 100% H2 in radiation environment
• Data points will be taken at 0.1 rad/s, 150 rad/s, and 20 rad/s
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Summary
• Effect of hydrogen on ELDRS

• Hole yield is dependent on dose rate
• High hydrogen concentration in low-field oxide shifts

the ELDRS response of bipolar devices.
• Preliminary simulations shows good qualitative

response.

• Annealing experiments after TID exposure in H2
• No signification annealing of Nit.
• Large differences in Not annealing slopes.
• Differences in annealing slope maybe due to spatial

distribution of H-induced trapped charge (p+ or H+).
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Future work

• Isochronal annealing and study the effect of E-
field and spatial distribution of H-induced trapped
charge.

• REOS (Sandia) and COMSOL(ASU) modeling of
ELDRS and TID response.

• FTIR and ERD (Elastic Recoil Detection)
measurements on H-defect properties in samples
irradiated in H2.
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Appendix
Effects of hydrogen on TID and annealing response

• Previous TID experiment in hydrogen

• Un-biased annealing in air/hydrogen

• Biased annealing in air
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Enhanced TID degradation in H2

Increase in Nit

Increase in Not

• BJTs exposed to 30krad
Co-60 gamma rays

• Enhanced buildup in Nit

• Enhanced buildup in Not

After Chen et al,
IEEE Trans. Nucl.

Sci., 2007



MURI 2008
19

Annealing in air

• Anneal with no
bias

• Not anneal slope
greater for higher
H2

• Annealing
experiments on Nit
showed little
change at
room temperature
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Annealing in 100% H2

• Anneal with no
bias

• Sudden drop of Not
corresponds w/
increase of Nit

• * H2 + D+  DH + H+

* After Mrstik & Rendell, 
IEEE Trans. Nucl. Sci., 1991
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 Brief Summary of Results
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If assuming uniform
spatial distribution near
the Si/SiO2 interface and
low E-fields in the oxide:

Oxide Si

H2 samples

Air samples

ρot,0,H2

ρot,0,air

After Mclean, TNS, 1976

e- tunneling
ε field
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Biased annealing behavior of rad-induced Not

Biased annealing results

• With applied bias,
change in annealing
rate.

• Usually the
tunneling equation is
solved numerically
with a E-field
dependent tunneling
probability:100% H2 irradiated

( , ) ( ) exp( ( ))g x t E Z E!= "

After Mclean, TNS, 1976


