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Motivation


•  Characterize and model radiation 
damage effects in modern CMOS 
device technologies 

•  Technologies:  
-  deep submicron bulk CMOS, 
-  silicon on insulator (El-Mamouni - VU, 
   Sanchez - ASU) 
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Previous Research

•  May 2005 - “Device-level Radiation Effects Modeling” 

Overview of numerical (TCAD) simulation approaches to modeling 
radiation effects in CMOS devices 
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Sheet Charge Trapped Charge vol. distribution 
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Previous Research

•  June 2006 - “Total Ionizing Dose Effects in Bulk 

Technologies and Devices” 
Characterize, parameterize TID effects. Formalize closed form 
analytical expressions for TID effects in devices (130nm CMOS). 
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Previous Research

•  June 2007 - “Modeling Total Ionizing Dose Effects in 

Deep Submicron Bulk CMOS technologies” 
Description and initial validation of radiation-enabled compact 
modeling approach for CMOS technologies ( ≥ 90nm CMOS). 
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Previous Research

•  May 2008 – Surface potential-based analytical modeling 

of TID effects in bulk CMOS devices 
Closed form analytical models used to estimate charge build-up in 
STI sidewall and fit degraded I-V characteristics in nFETs 
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Recent Work (2009)


•  Demonstration of  analytical model of TID 
effects on bulk CMOS isolations oxides 
•  Revised analytical model for TID defect buildup 

compared to FOXFET I-V and TCAD simulations 
•  Demonstration of modeling approach:  SRAM with 

reverse body bias 
•  Effects of Channel Implant Variation on Edge 

Leakage Currents 
•  Modeling TID effects in Multiple Gate FETs 
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Field Oxide FET Measurements
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TID experiments on FOXFETS used to calibrate 
the analytical model 

•   60Co irradiation source (DR ~ 20 rad/s) 
•   90 nm LP technology 

VD = 1V 
W = 200 µm 
L = 0.9 µm 
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Defect Extraction
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Defect potential in SP equations used to fit FOXFET data 

Dose [krad(Si)] Not (cm-2) Dit(cm-2/V) 

200 1.92x1012 2.6x1011 

500 2.39x1012 6.0x1011 

1000 2.75x1012 8.0x1011 

Fit based on approximations 
for oxide thickness, body 
doping, workfunction, etc. 

Fit w/ analytical model 
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TCAD Validation
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TCAD sims performed on FOXFET structure validate fit 

Vd Vg 
Vs 

Vb 

tox 

Dose [krad(Si)] Not (cm-2) Dit(cm-2/V) 

200 1.82x1012 2.99x1011 

500 2.29x1012 6.89x1011 

1000 2.65x1012 9.18x1011 

Fit w/ TCAD model 
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Analytical Defect Model 
(simplified)


13 

Simple analytical model shows linear dependence on dose 

fot = 0.45 

Diff. between 
fit and model  

saturation 
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Reasons for model discrepancy
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•  Simple model neglects: 
o Effect of precursor limit  

(saturation cannot be accurately 
reproduced by the model) 

o Effect of trapped charge annealing 
(anneal rate insufficient to explain saturation) 

o Effect of field inversion and electron trapping (most 
promising mechanism for modeling saturation) 

Anneal factor 

Pre-cursor limit factor 

basis for revised model 
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Revised Model Additions
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o Volumetric, uniform 
precursor distribution 
(nT) at fixed distance (x2) 
from interface 

o Electron compensation term added to volumetric 
charge build-up model 

.  

e- trapping term added 
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Oxide Field Inversion
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.  

•  At low TID oxide field 
  directed toward p-Si 

•  At high TID, oxide 
  field in reg. 1 inverts 
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Full Model


Δnot = 

Model computes oxide 
trapped charge density 
iteratively after specified 
irradiation time 
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Revised Analytical Model vs. TCAD


•  TCAD computes Not 
from REM simulator in  
Silvaco 

•  Model and TCAD use 
same parameters and 
function, i.e., nT, σn, σp, 
and fy 

•  Identical results except 
TCAD saturation occurs 
slightly before the model 

TCAD sat. 
Model sat. 

Slight discrepancy likely 
due to error near zero 
field inversion point (under 
investigation) … but results 
are very promising! 
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Circuit Demonstration: SRAM leakage 
mitigation with RBB


6T SRAM w/ nFET body control 

layout 

With reverse body bias (RBB), radiation-
induced supply current to cell suppressed, 
but do we really need 0.7V RBB?? 

Clark, TNS 2007 
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SRAM leakage mechanism: inter-device 
field oxide leakage


Leakage paths (top view) Leakage paths (x-sect) 

Through analysis of SRAM response, n-well to n+ diffusion inter-
device leakage identified as mechanism for increased supply current 
at high TID levels 
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TID analytical model implementation


Model enables: 

•  fit to non-RBB high dose 
response when VSB = 0V 

• identification of VSB 
sufficient to suppress field 
oxide leakage 

Use of model supports 
optimization of RHBD 
designs … important when 
considering tradeoff between 
RBB and SEEs! 
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Summary: Analytical Model


•  Discrepancies between saturated defect densities 
extracted from data and those calculated using simple 
trapping model suggest need for model revisions 

•  While charge annealing and precursor limits can cause 
saturation, the inclusion of field inversion with electron 
compensation models most effective in reproducing data 

•  Revised approach can be implemented easily as a 
compact model to enable estimates of circuit response to 
TID and support design optimization 
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Recent Work (2009)


•  Demonstration of  analytical model of TID 
effects on bulk CMOS isolations oxides 
•  Revised analytical model for TID defect buildup 

compared to FOXFET I-V and TCAD simulations 
•  Demonstration of modeling approach:  SRAM with 

reverse body bias 
•  Effects of Channel Implant Variation on Edge 

Leakage Currents 
•  Modeling TID effects in Multiple Gate FETs 
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Motivation of Study


• To model the effects of statistical variation in 
the dose and energy of MOSFET channel 
implants on radiation-induced edge parasitics 

• 90 nm commercial bulk CMOS technology 

Results show a slight variability in channel 
implant parameters can have a significant impact 
on doping levels and thus edge leakage currents 
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Radiation-induced edge leakage


Charge buildup (Not) in the STI inverts the sidewall and induces a 
parasitic leakage path along the edges of the “as-drawn” transistor 

Analytical model 
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Parasitic Edge Devices
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Increased exposure to TID leads to formation of parasitic edge 
devices (with varying tox) operating in parallel with “as-drawn” FET  

0 
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MOSFET Channel Implants 
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Doping along sidewall is determined by dose and energy 
of punchthrough (Pt), threshold-adjust (Vt-adjust), and 
sidewall implants  
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Channel Implant Variation
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•  Statistical variations in 
dose and energy of 
channel implants alter 
doping along STI sidewall  

•  Doping profiles obtained 
using process simulator  

•  Nominal values for dose 
and energy are 1.25 × 1013 
cm-2 and 4 keV (Vt implant) 

Bernstein et al., found a normal distribution in the threshold voltage 
when testing N number of devices (IBM J. RES. & DEV., 2006)  
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Impact on Doping Profile
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Effect of statistical variations in dose and energy of the 
Vt-adjust implant on doping profiles along STI sidewall  

Energy varied Dose varied 
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Off-state Leakage Current
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•  Off-state leakage is ID 
@ VG = 0 V 

•  Distribution in rad-
induced edge leakage 
currents for variations 
in the energy of the Vt-
adjust and Pt implants 

Implant energy varied 
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Off-state Leakage Current
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•  Off-state leakage is ID 
@ VG = 0 V 

•  Lognormal distribution 
in rad-induced leakage 
currents for variations 
in the implant dose of 
the Vt and Pt implants 

Implant dose varied 
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Summary:  Implant Variation Effects


•  Statistical variations in dose and energy of 
MOSFET channel implants impact doping 
along STI sidewall and thus amount of edge 
leakage current 

•  Results demonstrate large spread in leakage 
currents from a fairly tight normal 
distribution in process parameters 
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Recent Work (2009)


•  Demonstration of  analytical model of TID 
effects on bulk CMOS isolations oxides 
•  Revised analytical model for TID defect buildup 

compared to FOXFET I-V and TCAD simulations 
•  Demonstration of modeling approach:  SRAM with 

reverse body bias 
•  Effects of Channel Implant Variation on Edge 

Leakage Currents 
•  Modeling TID effects in Multiple Gate FETs 
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TID effects in MuGFET SOI devices 

Devices with narrower fins 
exhibit less degradation with 
TID as observed by ΔVth and 
ΔS-1 as a function of Not and 
Dit 

Simulation results  
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tsi = 10 nm tsi = 50 nm 

1.  Electric field near fin-BOX interface of device with narrow 
fins is reduced by influence of the lateral gates. This 
reduces the  charge yield 

2.  Devices with narrow fins have an improved control over the 
electrostatic potential inside the fin due to the lateral gates 

2 

1 1 

2 
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Why narrow fins are harder 
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MuGFET TID Model 
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.  

•  Id-Vgs degradation modeled 
analytically to predict ΔIoff as 
function of TID and tsi.  

•  Radiation-induced degradation 
parameters enter model 
through defect potential φnt 
which is a function of tsi.  

•  Parameters extracted to 
describe DG(tsi) making the 
analytical model adaptable to 
different technologies.  

Symbols = experimental data 
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Summary: TID effects in MugFETs


•  Modeling results support data (El-Mamouni) 
•  Thinner fins in MugFETs lead to less defect 

buildup in BOX and increased charge 
masking from lateral gates (i.e. thinner fins = 
harder parts) 

•  Surface potential based model can 
accurately reproduce experimental date 
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