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Motivation

• Characterize and model radiation
damage effects in modern CMOS
device technologies

• Technologies:
-  deep submicron bulk CMOS,
-  silicon on insulator (El-Mamouni)
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Previous Research

• May 2005 - “Device-level Radiation Effects Modeling”
   Overview of numerical (TCAD) simulation approaches to

modeling radiation effects in CMOS devices
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Previous Research

• June 2006 - “Total Ionizing Dose Effects in Bulk
Technologies and Devices”
   Characterize, parameterize TID effects. Formalize closed form

analytical expressions for TID effects in devices (130nm CMOS).
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Previous Research

• June 2007 - “Modeling Total Ionizing Dose Effects in
Deep Submicron Bulk CMOS technologies”
   Description and initial validation of radiation-enabled compact

modeling approach for CMOS technologies ( ≥ 90nm CMOS).
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Technology Parameters

- material (!X)

- device ("ms, tox , Nx)

- other structural features  
    ( e.g. trench aspect ratio )

External Conditions

- Bias

- Temperature

- Time

Device Layout

- gate geometry (W, L)

Compact Model

Device I -V sim

static , dynamic

Device

comparison

Experimental Data

Transistors

Nit, Not
from phys.
mod.

to phys. mod.

Model validation 

to circuit sim.

- RHBD

- Packaging
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Recent Work (2008)

• Full analytical model of TID effects on bulk
CMOS isolations oxides
• Analytical model for TID defect buildup
• Effects on sidewall surface potential
• Radiation-induced edge leakage model and

validation
• New data and analysis of effects on 90 nm

field oxides and multi-fingered transistors
(additional material)
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Ionization Damage in
Silicon Dioxide

8



9MURI  2008

Hole trapping process
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Oxide trapped charge formation
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Defect buildup:  Not
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Defect buildup is:

1. Greater for higher oxide
fields (consistent w/ fy)

2. Linear with dose
(no saturation … yet)

130 nm data

Data obtained from measurements on STI field oxide capacitors
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Two Stage Hydrogen model
Si-SiO 2
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Defect buildup:  Nit
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Nit defect buildup is:

1. Greater for higher oxide
fields (consistent w/ fy)

2. Linear with dose
(no saturation … yet)

3. Less than Not buildup

130 nm data

Data obtained from measurements on STI field oxide capacitors
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Modeling Radiation
Effects on Devices

14



15MURI  2008

Pre-irradiation behavior
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Gate Bias (V)
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Surface potential based
analytical model

Charge buildup (Not) in the STI inverts the sidewall and induces a
parasitic leakage path along the edges of the “as-drawn” transistor
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Parasitic leakage model
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Parasitic “edge” device modeled as  several thin, medium, and thick
nFETs operating in parallel with “as drawn”  FET
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Parasitic device description

gate

p-type Si body

STI
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• “Edge” devices represent
distinct subdivisions of
conducting sidewall

• The number (n) of “edge”
devices balance need for
simulation accuracy with
computational efficiency

• Defect generation and
effects of defects on
surface potential modeled
analytically for each
device
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Doping, tox vs. sidewall depth
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Effect of doping on ψs
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the impact of the sidewall parasitic transistors

• Lower doping values translate to a higher surface potential for
a given Not buildup and oxide thickness
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Effect of doping on ψs (cont.)
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• As NA is increased, there is a decrease in surface potential (i.e., a valley
with respect to w)

• If NA > 1×1018 cm–3, fluctuations in the doping profile will have a
negligible impact on ψs

• if NA< 1×1017 cm–3, non-uniformities in the profile will strongly affect ψs
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TCAD Calculation of Not
distribution

STI STI

body body

gate gate

tox tox

2-D device simulations using radiation enabled module in Silvaco
Atlas approximate Not buildup along sidewall

1 krad 10 krad
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Model for defect generation (Not)
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Effects on surface potential
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Model for drain current response

[ ]

( )( )tsstsdsssdt

tsstsdsssdsssdfbgb

I

VVI

!"!"#""!

!"!"
#

""""

$$$+$=

$$$$$$$$=

2

2/32/322

1 )()(
3

2)(
2

1
))((

ψsd  ψs at drain I1  Drift Component

ψss  ψs at source I2  Diffusion Component

Surface potential responses (at both source and drain ends) can be
calculated iteratively for each elementary transistor as a function of Vgb
and inserted into drain current equations

!
=

=+=
N

1i

id,d21ox
s

nid, II               )I(IC
L

W
ìI



26MURI  2008

Comparison of data and model
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Summary• N
eed for accurate radiation-enabled models (e.g., edge
leakage) that can be implemented in circuit simulators is
growing• M
odel based on new technique which calculates non-
uniform defect distributions and surface potential
responses along the STI sidewall to model the parasitics• S
imulated results using the model compare well to
experimental data obtained on 130 nm and 90 nm devices• M
odel predicts that in deep-submicron technologies, the
doping concentration near the sidewall corner has a
significant impact on the radiation response
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Additional
Material
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Single and Multi-
Finger Devices
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Gate Bias (V)
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Comparison of devices
Offstate leakage current (Ioff) ratio

• Ioff  defined as current
at Vg= 0 V

• Data shows that as
gate width increases,
offstate leakage ratio
significantly
increases

• Multi-fingered
devices significantly
more susceptible to
TID than single stripe
devices
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Failure of linear model

33

• Linear model predicts

Ioff (m=n) = n*Ioff (m=1)
n = # fingers

• Data shows super-linear
increase in TID
sensitivity

• Discrepancy suggests
secondary cause needed
to explain multi-finger
response
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Potential Cause

Outer poly gate fingers
may block halo implant
on inner fingers
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Effect of lower doping

35

Pre-irradiation experimental data used to approximate doping
difference (lower doping explains increased sensitivity to TID)

NA3 (single stripe) ≈ 1.25 × NA3 (multi-finger)
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Single and multi-finger device summary

36

• Multi-fingered devices show a super linear
increase in TID sensitivity

• Potential cause for increased susceptibility
is halo implant masking (lower effective p-
type body doping)

• Increased TID susceptibility in multi-fingered
devices could have circuit design
implications in this technology
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Field Oxide Leakage

37
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VDD = 1.3V

VDD = 1V

10

Intra-device leakage
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SRAM vs. Device 90nm comparison
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4T SRAM NMOS XSTOR

After Clark TNS 2007

> 100X increase in
static supply current
in SRAM array

< 10X increase in
off-state leakage in
NMOS devices

Lack of correlation between circuit and device response suggests
inter- device and/or inter-cell leakage due to field oxide leakage

RBB

no RBB
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Leakage paths

Polysilicongate

N+ drain

N+ Source

LeakageLeakage

Polysilicon gate

N+ drain

N+ Source

LeakageLeakage

Polysilicongate

N+ drain

N+ Source

LeakageLeakage

Polysilicon gate

N+ drain

N+ Source

LeakageLeakage

1 NMOS Drain-to-Source

1

39



40MURI  2008

2 NMOS D/S to NMOS S/D
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3 NMOS D/S to NWELL
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+++ + ++ + ++ ++ + ++ ++
+

n+ p+n+

Leakage path

n+

p+ n+

n-well

n-well

VDD0V Poly
gate

Poly
gate

Leakage paths
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4 NMOS NWELL to NWELL
(only if wells at different potential – rare in SRAM)

4

Metal/Poly line Poly
gate

p+ p+

Metal/Poly line

+++ + ++ + ++ ++ + ++ ++
+

p+

Leakage path

n+

p+ n+

n-well

n-well

VW20V Poly
gate

Poly
gate

Poly
gate

p+ p+
n+

n-well

p+p+n+

VW1

n-well

Leakage paths
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Test structures

43

Example: N+ to Nwell w/ poly gate

  3 n+-to-n+ w/ metal gate
• w/ GB (L = 0.5 µm) 
• w/o GB  (L = 0.5 µm and L = 0.14 µm )

  3 n+-to-nwell w/ metal gate 
• w/ GB (L = 0.55 µm) 
• w/o GB  (L = 0.55 µm and L = 0.21 µm ) 

   1 n+-to-n+ w/ poly gate (L = 0.2 µm)
   1 n+-to-nwell w/ poly gate (L = 0.28 µm)
   2 nwell-to-nwell w/ poly gate

    (L = 1.5 µm and L = 0.9 µm)

FOXFET variants

G

S D S

All FOXFETs designed with 200 µ
m gate width
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Legend

44

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  

Gate  M1
 

M1
 

M1
 

M1
 

M1
 

M1
 

Poly
 

Poly
 

Poly
 

Poly
 

Drain  n
+
 n-well  n

+
 n-well  n-well  n

+
 n-well  n-well  n-well  n

+
 

Source  n
+
 n

+
 n

+
 n

+
 n

+
 n

+
 n-well  n-well  n

+
 n

+
 

Guardband  yes no no yes no no no no no no 

Length, L (µm) 0.5  0.55 0.5  0.5  0.21 0.14 1.5 0.9 0.28 0.2 
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0

AnnealIrradiation Irradiation

Anneal

29 days

Rad bias: VG = 8V

• During irradiation, Vg = 1.2 V for  0 < t < 30 and Vg = 8 V for 30 < t < 90
• Measurement bias: Vg = 1 V, Vd = 1 V, Vs = Vb = 0 V
• 7-9 magnitude increase in poly-gate devices
• < 4 magnitude increase in M1-gate devices
• Slight length effect

TID Results (LP)

45

Poly-gateM1-gate
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TID Results (SF_1)
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AnnealIrradiation

Poly-gateM1-gate

• Measurement bias: Vg = 1 V, Vd = 1 V, Vs = Vb = 0 V
• 4-8 magnitude increase with poly-gate (much harder than LP)
• No TID threat in SF field path with metal overlap
• Slight length effect

46

Anneal
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Design implications

47

P+ guard-band
and metal route
should help

N-well to n+ drain leakage under poly
could be problem in standard SRAM
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SF vs LP – A doping effect

48

Under leakage path

Current α 1/NA
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 All FOXFET variants in LP and SF technologies were tested up
to 2 Mrad

 Results showed significant degradation in poly-gated n-well to
n-well devices (not a large concern for most designs)

 Measurable degradation in n+ to n-well and n+ to n+ poly gated
parts
 Could be cause of unaccounted for leakage in SRAM and other ICs

 Reverse body bias will mitigate leakage
 Annealing looks fairly normal, but biased anneals should be

run
 Metal gated devices were much harder than poly-gate devices

(impact of oxide efield on charge yield on defect buildup in
FOX)

 LP was considerably softer than SF (effect of lower doping in
body)

FOXFETs results summary
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