

Reliability and total dose effects in Germanium p-MOSFETs

Rajan Arora¹, S. R. Kulkarni², Jerome Mitard^{3, 4}, Eddy Simoen³, E. X. Zhang¹, D. M. Fleetwood^{1, 5}, B. K. Choi¹, R. D. Schrimpf¹, K. F. Galloway¹, M. Meuris³, and Cor Claeys^{3, 4}

¹Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235. USA

²IEAP, University of Kiel, Leibnizstrasse, Kiel, Germany- 24118

³IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.

⁴ESAT –INSYS, University of Leuven, 3001 Leuven, Belgium

⁵Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

Motivation & Goals

- Importance of Germanium, III-V MOSFETs to 22 nm (and beyond) technology node
- \diamond Understanding effect of basic parameters (e.g. E_g , n_i) on Ge MOS characteristics
- ♦Effects of total dose radiation on state of art Ge p -MOSFETs
- ♦Influence of variation in process parameters on total dose response

Ge p-MOSFETs for 22 nm technology node

 D_{it} is asymmetric in the band gap:

- higher density (of the order of 10¹³ cm⁻² eV⁻¹) near the conduction band
- lower trap density (of the order of 10¹² cm⁻² eV⁻¹) near the valence band

- higher electron (2.5X) and hole (4X) bulk mobility relative to that of Si
- p-channel HfO₂/Ge MOSFETs with EOT down to 0.85 nm, exhibiting higher hole mobility compared with HfO₂/Si control samples have been reported
- V_{dd} scaling makes it possible to use low bandgap materials
- Low processing temperature of Ge MOSFETs compatibility with 3-D IC integration

Device Details

- Ge p-MOSFETs HfO₂ high-κ
- SiO₂/Si interlayer, TiN/TaN gate metal
- Variation in halo doping
- Variation in Si monolayer thickness

Total dose radiation study on Ge p-MOSFETs: Basic mechanisms

No significant decrease in mobility reported with x-ray dose.

No Change in gate leakage characteristics

- Difference in off-state current in prerad condition between source and drain terminals
- With total dose radiation the off-state leakage gets worse
- Consistent increase in off-state current results in degraded lon/loff ratio

Mechanism behind increasing junction leakage with radiation

$$I/A=J_A+P/A\times J_P$$

- p⁺-n junction leakage increases with total dose
- Increase due to increasing perimeter junction leakage with total dose
- Increasing parameter leakage current due to increase in density of interface traps close to the gate oxide-drain interface

Effect of variation in halo doping and number of Si monolayer (ML)

- Variation in process effects total dose response
- All other process conditions similar

Wafer	Gate prebake and epilayer	Halo
D04	350 °C SiH ₄ ; 5 Si Monolayers	As: 80keV, 5 × 10 ¹³ cm ⁻²
D09	500 °C SiH ₄ ; 8 Si Monolayers	As: 80keV, 3.5 ×10 ¹³ cm ⁻²
D10	500 °C SiH ₄ ; 8 Si Monolayers	As: 80keV, 6.5 × 10 ¹³ cm ⁻²

On/Off current ratio - L dependence

• Short Channel length (500 nm here) greater prerad I_{on}/I_{off} than long channel length (10 μ m here) device

On/Off current ratio – process dependence

- Device with 8 Si ML and minimum halo doping density has best prerad I_{or}/I_{off} and maintains a higher value after radiation
- Device with 8 Si ML and higher halo doping density has better radiation response than D05 with 5 Si ML

Mobility Comparison

- 8 Si ML devices do not show significant mobility degradation
- Device with 5 Si ML shows significant mobility degradation

Increasing substrate current

- Increasing p⁺-n junction leakage results in increased substrate current
- Substrate current for device D04 was more than D09 after radiation

Mechanisms

- Lower halo doping lower prerad off state current
- Off state current remains low for lower halo doping device with total dose radiation
- 8 Si ML device lowest prerad interface trap density
- 8 monolayer device maintains comparatively lower interface trap density with total dose radiation

Conclusions

- On-off current ratio decreases for Ge p-MOSFETs with total dose
- Process with minimum halo doping has maximum on -off current ratio
- Process with 8 Si monolayers has higher on-off current ratio than 5 monolayer devices
- Process with 5 Si monolayers shows the maximum mobility degradation with total dose