Reliability and total dose effects in Germanium p-MOSFETs Rajan Arora¹, S. R. Kulkarni², Jerome Mitard^{3, 4}, Eddy Simoen³, E. X. Zhang¹, D. M. Fleetwood^{1, 5}, B. K. Choi¹, R. D. Schrimpf¹, K. F. Galloway¹, M. Meuris³, and Cor Claeys^{3, 4} ¹Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235. USA ²IEAP, University of Kiel, Leibnizstrasse, Kiel, Germany- 24118 ³IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. ⁴ESAT –INSYS, University of Leuven, 3001 Leuven, Belgium ⁵Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA #### **Motivation & Goals** - Importance of Germanium, III-V MOSFETs to 22 nm (and beyond) technology node - \diamond Understanding effect of basic parameters (e.g. E_g , n_i) on Ge MOS characteristics - ♦Effects of total dose radiation on state of art Ge p -MOSFETs - ♦Influence of variation in process parameters on total dose response #### Ge p-MOSFETs for 22 nm technology node D_{it} is asymmetric in the band gap: - higher density (of the order of 10¹³ cm⁻² eV⁻¹) near the conduction band - lower trap density (of the order of 10¹² cm⁻² eV⁻¹) near the valence band - higher electron (2.5X) and hole (4X) bulk mobility relative to that of Si - p-channel HfO₂/Ge MOSFETs with EOT down to 0.85 nm, exhibiting higher hole mobility compared with HfO₂/Si control samples have been reported - V_{dd} scaling makes it possible to use low bandgap materials - Low processing temperature of Ge MOSFETs compatibility with 3-D IC integration #### **Device Details** - Ge p-MOSFETs HfO₂ high-κ - SiO₂/Si interlayer, TiN/TaN gate metal - Variation in halo doping - Variation in Si monolayer thickness ## Total dose radiation study on Ge p-MOSFETs: Basic mechanisms No significant decrease in mobility reported with x-ray dose. No Change in gate leakage characteristics - Difference in off-state current in prerad condition between source and drain terminals - With total dose radiation the off-state leakage gets worse - Consistent increase in off-state current results in degraded lon/loff ratio ## Mechanism behind increasing junction leakage with radiation $$I/A=J_A+P/A\times J_P$$ - p⁺-n junction leakage increases with total dose - Increase due to increasing perimeter junction leakage with total dose - Increasing parameter leakage current due to increase in density of interface traps close to the gate oxide-drain interface ## Effect of variation in halo doping and number of Si monolayer (ML) - Variation in process effects total dose response - All other process conditions similar | Wafer | Gate prebake
and epilayer | Halo | |-------|--|--| | D04 | 350 °C SiH ₄ ; 5
Si Monolayers | As: 80keV, 5
× 10 ¹³ cm ⁻² | | D09 | 500 °C SiH ₄ ; 8
Si Monolayers | As: 80keV,
3.5 ×10 ¹³ cm ⁻² | | D10 | 500 °C SiH ₄ ; 8
Si Monolayers | As: 80keV,
6.5 × 10 ¹³
cm ⁻² | ## On/Off current ratio - L dependence • Short Channel length (500 nm here) greater prerad I_{on}/I_{off} than long channel length (10 μ m here) device ### On/Off current ratio – process dependence - Device with 8 Si ML and minimum halo doping density has best prerad I_{or}/I_{off} and maintains a higher value after radiation - Device with 8 Si ML and higher halo doping density has better radiation response than D05 with 5 Si ML ### **Mobility Comparison** - 8 Si ML devices do not show significant mobility degradation - Device with 5 Si ML shows significant mobility degradation ### **Increasing substrate current** - Increasing p⁺-n junction leakage results in increased substrate current - Substrate current for device D04 was more than D09 after radiation #### **Mechanisms** - Lower halo doping lower prerad off state current - Off state current remains low for lower halo doping device with total dose radiation - 8 Si ML device lowest prerad interface trap density - 8 monolayer device maintains comparatively lower interface trap density with total dose radiation #### Conclusions - On-off current ratio decreases for Ge p-MOSFETs with total dose - Process with minimum halo doping has maximum on -off current ratio - Process with 8 Si monolayers has higher on-off current ratio than 5 monolayer devices - Process with 5 Si monolayers shows the maximum mobility degradation with total dose