

Total Dose Effects on HfO₂ based Ge MOS capacitors

Rajan Arora¹, D.M. Fleetwood^{1,2}, R.D. Schrimpf¹, K.B. Chung³, G. Lucovsky³

¹Department of Electrical Engineering & Computer Science ²Department of Physics & Astronomy Vanderbilt University, Nashville, TN - 37235 ³Department of Physics and Material Science, North Carolina State University

Rajan Arora

NC STATE UNIVERSITY

Motivation

- Germanium has higher and more symmetric electron & hole mobilities than Si
- Smaller bandgap
- High-k possible on Ge
- Radiation response

Rajan Arora

Device details

Energy Band Diagram

Gate Currents

Problem of leakage currents in Germanium devices

Rajan Arora

Radiation results

$V_q > 0$ (During irradiation)

$V_q = 0$ (During irradiation)

traps and oxide traps

unbiased device - not a lot of oxide/ border traps though it shows some stretch-out ~ 50mV

Devices radiated at 31.5 krad(SiO₂)/min, C-V at 1MHz

Rajan Arora

MURI Review May'08

1.9 nn

n-Ge

HISION

-0.2

0

0.2

- Major oxide trap shift due to bias
- Radiation did induce interface traps

-1.2

-1.4

-0.8

-1

-0.6

Gate Voltage (V)

 Large gate current of the order of 1 A/cm². So another possibility is that the gate leakage current is neutralizing some of the radiation induced charges

-0.4

(with HfO₂)

C-V shifted back near 3Mrad values for the biased device.

Rajan Arora

Ge-HfSiON

	Al
HfSiON	3.8 nm
GeOxNy	~ 0.7nm
n-Ge	

Vg > 0 (During irradiation)

hysteresis shows presence of border traps

positive bias radiation - shift. Due to the bias and not radiation as shown in HfO₂/HfSiON/Ge system

Vg = 0 (During irradiation)

no bias radiation - no shift in C-V

Rajan Arora

Conclusion

- High-k dielectrics possible on Ge.
- The dielectrics show hysteresis and effect of bias.
- HfSiON/Ge capacitors show a little better radiation and bias response than HfO₂/HfSiON/Ge capacitor. But HfO₂/HfSiON/Ge capacitors have higher accumulation capacitance value and lower leakage.
- HfSiON seems to be a good interface on top of which higher dielectric constant oxide can be grown without sacrificing radiation response.