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Goal: develop understanding of
Interaction of radiation with CMOS materials

Metal High- K Dielectric ]
Electrode
Barrier? b, I l ¢,
C o« Ag/d A
SiO, Monolayer? y
- > EOT - effective " b,
10-20nm - . .
Source  Drain oxlide thickness
Post-Si? i

CMOS transistor ~20107?

+ New materials: metal electrodes, high-K dielectrics,
semiconducting substrates

+ Electronic structure, defects, mobility, reliability, failure

+ Look for specific physical and chemical signatures of
radiation induced defects — create atomic picture of defects



Rutgers CMOS Materials Analysis

Use high resolution characterization methods to:

. Determine composition, structure and electronic properties
gate stacks that use new (post-Si) materials

i.  Help determine physical and chemical nature of radiation
induced defects

¢ Scanning probe microscopy — topography, surface
damage, electrical defects

¢ lon scattering: RBS, MEIS, NRA, ERD — composition,
crystallinity, depth profiles, H/D

¢ Direct, inverse and internal photoemission —
electronic structure, band alignment, defects

¢ FTIR, XRD, TEM
Electrical — IV, CV
¢ Growth — ALD, CVD, PVD
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Results

¢ Generated thin films with high-K dielectrics
(HfO,) and metal gate electrodes (Al, Ru).

+ Performed ion scattering, photoemission,
Internal and inverse photoemission on selected
systems.

¢ Had samples irradiated by Vanderbilt group
(Feldman), as well as at Rutgers.

+ Performed conductive tip SPM measurements
of defects on selected systems
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Nitride barrier monolayers to minimize diffusion

Nitride barrier
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 Nitride barrier layers helpful to slow O, Si and dopant diffusion,
as well as silicate formation and other interface reactions.

. * Nitridation also raises crystallization temperature.



Yield (a.u.)

Isotope reactions and diffusion in silicates
Relation between composition and O incorporation

HfO,(SIO,), re-oxidation in 80: 500° C, 102 Torr, 30 min

(HfO,),SIO ]
1 2 216 2 SI
1S O '
18]
121
1.2t
> _ N 180
105 110 115
H™ energy (keV) H" energy (keV)
X = 0% 33%

Yield (a.u.)

105 110 5
H" energy (keV)
50%

strong exchange reaction even at 500°C: 160 loss, with same total O conc.

no change in width of 10 and Si peaks (no formation of interfacial oxide)
exchange rate decreases with increase of SIO, fraction X

50:50 mix of SiO,:HfO, is enough to suppress oxygen exchange (in this case)

Rutgers/Sematech



Exchange and growth T-dependence
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Interaction of metal overlayers with dielectric
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Interface chemical stability: Heats of oxide formation of most
stable oxides and XPS results demonstrating interface reactivity

-AH formation in kJ Metal
per mol O
<0 Au
0-50 Ag, Pt
50 - 100 Pd
100 - 150 Rh
150 - 200 Ru, Cu
200 - 250 Re, Co, Ni, Pb
250 - 300 Fe, Mo, Sn, W, Ge
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350 - 400 K, Cr, Nb, Mn
400 — 450 Na, V
450 - 500 Si
500 - 550 Ti, U, Ba, Zr
550 - 600 Al, Sr, Hf, Ce, La
600 - 650 Sm, Mg, Th, Ca, Sc, Y

Surf. Sci. 333 (1995) 845;

Surf Sci. Rep, 27, 1997
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MEIS spectra of low energy dopant implants:

ultrashallow junctions
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Arsenic (As) behavior in SIMOX vs. bulk-Si

Interaction of As with vacancies
following higher E implants...

After annealing:

e Si interstitials remain in bulk-
Si, but NOT in SIMOX

e excess vacancies annihilate Si
interstitials in SIMOX

e SIMOX crystal quality is
excellent, especially for RTA
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Alternative Channel Materials

Mobility improves by straining Si, but CMOS scaling demands further
improvements....try other semiconductors!

Key challenge for alternative channel materials is the dielectric — need low
interface and bulk defect concentration

Also need high I/l « ratio, appropriate integration, high thermal stability,
appropriate ban aﬁgnment with no E; pinning, etc.

Ge and SiGe studied extensively for years - IBM, Intel...

l1I-VV compound semiconductors now being seriously considered for CMOS —
Motorola/Freescale, Agere, Intel, IBM, IMEC...

* InGaAs-on-insulator: NFET (surface channel)
* Ge-on-Insulator: PFET (surface channel)

Si Substrate from IBM



HfOx/Ge (ALD and MOCVD)
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little interfacial GeO, (within sensitivity of the measurements)
some Cl accumulation at the interface

some epitaxial growth
MOCVD HfGe and HfGeO, intermixing (condition dependent)
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surface Ge (supressed by Ge nitridation)



HfO, on GaAs: MEIS and TEM comparison

TEM™ MEIS

No etch

Ga-rich oxide

HF etch

h oxide

e TEM and MEIS results are consistent;
e native oxide ~ 20 A:
s * As:Gax0.17, (Ga+As).O = 1.04 w/Agere



Electronic structure in multilayer stacks
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« Band edge energies determined in many ways — elec. and optical spec.

« Can we use spectroscopies to (i) measure energies and LDOS more
precisely, (i) determine interface dipoles and band alignment, and (iii) use

¢ Interface engineering to control effective work function...
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Experimental tools to

examine electronic structure

Photoemission (Occupied States)

Electron

Electron
Counts

Energy

Inverse Photoemission (Unoccupied States)

e-

|

# of Photons
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Direct Gap Determination

Gap =6

HfO,/SiO,/Si & eV

-10 -8 -6 -4 2 0 2 4 6

Energ;y(eV)
Single chamber measurments Band tail states
Underlying silicon states visibles Defects states

Thicker oxides may charge - use care!



Band offsets with Si for Hf, Si,_ O,

HfO, Hf,Si 0, SIiO,
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Oxide/semiconductor and metal/oxide interfaces

Dielectric

Hf, Si, O,

Sio,

Metal electrode

Workfunction

Chemistry

Ru
5.2 eV

Low Reactivity
~ Noble Metal

. HfO,

Al
4.2 eV

High Reactivity
Stable Oxide
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Energy shifts upon metallization

AI/HfO.SSSiOASOZ

VB, CB and core levels are
shifting the same way
by the same amount



Metal interaction with the substrate
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Al/HfO,/GeO,/Ge
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Internal Photoemission (IntPES)
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Scanning probe measurements of
topography and dielectric properties

1.51nm
Image information
Ra = 0121 nm RMS = 0.153 nm
1.21nm Rz = 1.41 nm P-W = 1.51 nm
S= 1.00 um# S ratio = 1.00
0.90nm
1
Ra [nm] 0103
0.80nm Rz [nm] 0373
RMS [nm] 0.125
Py [nm] 0.607
0.30nm
Length  [um] 0.893
0.00nm
HfO2/SION/SI proton
AFM Slope Ref: -2.800Y.
Size: 1.00x 1.00um. Bias: 0.000V.
0.607 nm|
0
|
0 0.893 um




current image of unirradiated Hf,Si,O,/Si film

100 um %

sematech# 12 un-radiated area
sematech#12
. 3.30:x3.30 um
Size  3.30:x3.30 um Tip reference -1.000 W
Tip reference -3.000 W Sample biaz  1.000
Sample bias  0.000 W

tapping mode current image




AFM and current image of irradiated HfO,/Si film
flux is ~2x10* H*/cm? H*~100keV

sematech#12 sematech#12

Size 230 x32.320um Size 230 x2.320um
Tip reference -2.000 W Tip reference -1.000 W
Sample bias  0.000 % Sample bias  1.000 W

Left: tapping mode Right: current image
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AFM images of HfO,/SION/SI

Before (a) and after (b) radiation exposure ~10% ~
200keV He?t

(a) (b)
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Conductive Tip AFM Image and |-V
Behavior of a Ru/HfO,/Si Stack
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Plans

Generation broader range of films and devices with high-K
dielectrics (HfO,) and metal gate electrodes (Al, Ru, Pt).

Interface engineering: SIO,N, (vary thickness and composition)

Expand physical measurements of defects created by high energy
photons and ions using SPM and TEM

Correlate physical measurement results with electrical methods.

Develop quantitative understanding of behavior as a function of
particle, fluence and energy.

Monitor H/D concentration and profiles, and effects on defect
generation (by radiation) and passivation.

Determine if radiation induced behavior changes with new channel
materials (e.g., Ge, InGaAs), strain, or SOI

Explore effects of processing and growth on radiation behavior.
Correlate with first principles theory.
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